Youhui Zhang, Yu Kong, Yanjun Yan, Feng Gao, He Ma, Changjin Liu
{"title":"亲水胶体和天然乳化剂对超高温灭菌燕麦饮料物理稳定性的影响","authors":"Youhui Zhang, Yu Kong, Yanjun Yan, Feng Gao, He Ma, Changjin Liu","doi":"10.1177/10820132231176875","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to improve the physical stability of ultra-high temperature (UHT) oat beverage by adding hydrophilic colloids (guar gum [GG] and xanthan gum [XG]) and a natural emulsifier (soluble soybean polysaccharide [SSPS]). The stability of the oat beverage was characterized by particle size, zeta potential, rheological properties, Fourier-transform infrared (FTIR) spectroscopy, backscattered light intensity (ΔBS), and microstructure. The results indicated that XG reduced the average particle size and size distribution of the beverage, indicating that XG could prevent particle aggregation. GG increases the apparent viscosity of the oat beverage without affecting the zeta potential. When SSPS was added to the oat beverage, it increased the absolute value of the zeta potential and the infrared absorption peak intensity, while the average particle size and backscattered light intensity (ΔBS) decreased, resulting in a more uniform microstructure. The zeta potential reached a maximum value of 32.12 when GG, XG, and SSPS were combined, indicating that the physical stability of the oat beverage was effectively improved when all three were present simultaneously. This study may provide some suggestions for the industrial production of low-viscosity cereal beverages with good stability.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"764-772"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of hydrocolloids and natural emulsifier in the physical stability of UHT oat beverage.\",\"authors\":\"Youhui Zhang, Yu Kong, Yanjun Yan, Feng Gao, He Ma, Changjin Liu\",\"doi\":\"10.1177/10820132231176875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to improve the physical stability of ultra-high temperature (UHT) oat beverage by adding hydrophilic colloids (guar gum [GG] and xanthan gum [XG]) and a natural emulsifier (soluble soybean polysaccharide [SSPS]). The stability of the oat beverage was characterized by particle size, zeta potential, rheological properties, Fourier-transform infrared (FTIR) spectroscopy, backscattered light intensity (ΔBS), and microstructure. The results indicated that XG reduced the average particle size and size distribution of the beverage, indicating that XG could prevent particle aggregation. GG increases the apparent viscosity of the oat beverage without affecting the zeta potential. When SSPS was added to the oat beverage, it increased the absolute value of the zeta potential and the infrared absorption peak intensity, while the average particle size and backscattered light intensity (ΔBS) decreased, resulting in a more uniform microstructure. The zeta potential reached a maximum value of 32.12 when GG, XG, and SSPS were combined, indicating that the physical stability of the oat beverage was effectively improved when all three were present simultaneously. This study may provide some suggestions for the industrial production of low-viscosity cereal beverages with good stability.</p>\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":\" \",\"pages\":\"764-772\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132231176875\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231176875","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Influence of hydrocolloids and natural emulsifier in the physical stability of UHT oat beverage.
This study aimed to improve the physical stability of ultra-high temperature (UHT) oat beverage by adding hydrophilic colloids (guar gum [GG] and xanthan gum [XG]) and a natural emulsifier (soluble soybean polysaccharide [SSPS]). The stability of the oat beverage was characterized by particle size, zeta potential, rheological properties, Fourier-transform infrared (FTIR) spectroscopy, backscattered light intensity (ΔBS), and microstructure. The results indicated that XG reduced the average particle size and size distribution of the beverage, indicating that XG could prevent particle aggregation. GG increases the apparent viscosity of the oat beverage without affecting the zeta potential. When SSPS was added to the oat beverage, it increased the absolute value of the zeta potential and the infrared absorption peak intensity, while the average particle size and backscattered light intensity (ΔBS) decreased, resulting in a more uniform microstructure. The zeta potential reached a maximum value of 32.12 when GG, XG, and SSPS were combined, indicating that the physical stability of the oat beverage was effectively improved when all three were present simultaneously. This study may provide some suggestions for the industrial production of low-viscosity cereal beverages with good stability.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).