整体与部分感觉运动学习的事件相关(去)同步和潜能。

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Juan J Mariman, Trinidad Bruna-Melo, Rosario Gutierrez-Rodriguez, Pedro E Maldonado, Pablo I Burgos
{"title":"整体与部分感觉运动学习的事件相关(去)同步和潜能。","authors":"Juan J Mariman,&nbsp;Trinidad Bruna-Melo,&nbsp;Rosario Gutierrez-Rodriguez,&nbsp;Pedro E Maldonado,&nbsp;Pablo I Burgos","doi":"10.3389/fnsys.2023.1045940","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are different ways to learn a sensorimotor task. This research focuses on whole versus part learning in a complex video game that involves sensorimotor adaptations and skill learning. The primary aim of this research is to compare the changes in (1) event-related potentials (ERP) and (2) Alpha and Beta event-related desynchronization/synchronization [ERD(S)] of EEG between whole and part practice protocols.</p><p><strong>Materials and methods: </strong>18 Healthy young participants practiced for 5 days a video game with distorted kinematic (advancing skill) and dynamic features (shooting skill) to test the ability to combine sensorimotor skill components learned modularly (part learning, 9 participants) or combined (whole practice, 9 participants). We examined ERP and ERD(S) in EEG channels in the baseline test (day 1) and the retention test (day 5), dissociating epochs with advancing or shooting. We focus the analysis on the main activity of ERP or ERD(S) in different time windows.</p><p><strong>Results: </strong>In the advancing epochs (distorted kinematic), both groups showed a decrease in time for ERP and an increase in Beta ERD activity in central and posterior channels. In the shooting epochs (distorted dynamic), the Whole group showed a decrease in time for ERPs in anterior and central-posterior channels. Additionally, the shooting ERS in the Beta band decreases within sessions in central channels, particularly for the Part group.</p><p><strong>Conclusion: </strong>Neural correlates of kinematic and dynamic control [ERP and ERD(S)] were modulated by sensorimotor learning, which reflects the effect of the type of practice on the execution and the evaluation of the action. These results can be linked with our previous report, where the simultaneous practice of kinematic and dynamic distortions takes advantage of the motor performance on retention tests, indicating a more automatic control for the whole practice group.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"17 ","pages":"1045940"},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Event-related (de)synchronization and potential in whole vs. part sensorimotor learning.\",\"authors\":\"Juan J Mariman,&nbsp;Trinidad Bruna-Melo,&nbsp;Rosario Gutierrez-Rodriguez,&nbsp;Pedro E Maldonado,&nbsp;Pablo I Burgos\",\"doi\":\"10.3389/fnsys.2023.1045940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There are different ways to learn a sensorimotor task. This research focuses on whole versus part learning in a complex video game that involves sensorimotor adaptations and skill learning. The primary aim of this research is to compare the changes in (1) event-related potentials (ERP) and (2) Alpha and Beta event-related desynchronization/synchronization [ERD(S)] of EEG between whole and part practice protocols.</p><p><strong>Materials and methods: </strong>18 Healthy young participants practiced for 5 days a video game with distorted kinematic (advancing skill) and dynamic features (shooting skill) to test the ability to combine sensorimotor skill components learned modularly (part learning, 9 participants) or combined (whole practice, 9 participants). We examined ERP and ERD(S) in EEG channels in the baseline test (day 1) and the retention test (day 5), dissociating epochs with advancing or shooting. We focus the analysis on the main activity of ERP or ERD(S) in different time windows.</p><p><strong>Results: </strong>In the advancing epochs (distorted kinematic), both groups showed a decrease in time for ERP and an increase in Beta ERD activity in central and posterior channels. In the shooting epochs (distorted dynamic), the Whole group showed a decrease in time for ERPs in anterior and central-posterior channels. Additionally, the shooting ERS in the Beta band decreases within sessions in central channels, particularly for the Part group.</p><p><strong>Conclusion: </strong>Neural correlates of kinematic and dynamic control [ERP and ERD(S)] were modulated by sensorimotor learning, which reflects the effect of the type of practice on the execution and the evaluation of the action. These results can be linked with our previous report, where the simultaneous practice of kinematic and dynamic distortions takes advantage of the motor performance on retention tests, indicating a more automatic control for the whole practice group.</p>\",\"PeriodicalId\":12649,\"journal\":{\"name\":\"Frontiers in Systems Neuroscience\",\"volume\":\"17 \",\"pages\":\"1045940\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Systems Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsys.2023.1045940\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2023.1045940","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:学习感觉运动任务有不同的方法。本研究主要关注复杂电子游戏中涉及感觉运动适应和技能学习的整体与部分学习。本研究的主要目的是比较(1)事件相关电位(ERP)和(2)α和β事件相关去同步/同步[ERD(S)]在整体和部分实践方案之间的变化。材料和方法:18名健康的年轻参与者进行了为期5天的扭曲运动学(推进技能)和动态特征(射击技能)的视频游戏,以测试将模块学习的感觉运动技能组成部分(部分学习,9人)或组合(整体练习,9人)的能力。我们在基线测试(第1天)和保留测试(第5天)中检测脑电图通道中的ERP和ERD(S),将前进或射击分离开来。重点分析了ERP和ERD(S)在不同时间窗口内的主要活动。结果:在前进期(扭曲运动),两组均表现出ERP时间缩短,中央和后通道β ERD活性增加。在射击时期(扭曲动态),全组前、中后通道ERPs时间下降。此外,在中央通道的会话中,Beta波段的射击ERS减少,特别是部分组。结论:感觉运动学习调节了运动控制和动态控制的神经相关[ERP和ERD(S)],反映了练习类型对动作执行和评价的影响。这些结果可以与我们之前的报告相关联,其中运动学和动态扭曲的同时练习利用了保持测试中的运动性能,表明整个练习组的自动控制程度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Event-related (de)synchronization and potential in whole vs. part sensorimotor learning.

Event-related (de)synchronization and potential in whole vs. part sensorimotor learning.

Event-related (de)synchronization and potential in whole vs. part sensorimotor learning.

Event-related (de)synchronization and potential in whole vs. part sensorimotor learning.

Background: There are different ways to learn a sensorimotor task. This research focuses on whole versus part learning in a complex video game that involves sensorimotor adaptations and skill learning. The primary aim of this research is to compare the changes in (1) event-related potentials (ERP) and (2) Alpha and Beta event-related desynchronization/synchronization [ERD(S)] of EEG between whole and part practice protocols.

Materials and methods: 18 Healthy young participants practiced for 5 days a video game with distorted kinematic (advancing skill) and dynamic features (shooting skill) to test the ability to combine sensorimotor skill components learned modularly (part learning, 9 participants) or combined (whole practice, 9 participants). We examined ERP and ERD(S) in EEG channels in the baseline test (day 1) and the retention test (day 5), dissociating epochs with advancing or shooting. We focus the analysis on the main activity of ERP or ERD(S) in different time windows.

Results: In the advancing epochs (distorted kinematic), both groups showed a decrease in time for ERP and an increase in Beta ERD activity in central and posterior channels. In the shooting epochs (distorted dynamic), the Whole group showed a decrease in time for ERPs in anterior and central-posterior channels. Additionally, the shooting ERS in the Beta band decreases within sessions in central channels, particularly for the Part group.

Conclusion: Neural correlates of kinematic and dynamic control [ERP and ERD(S)] were modulated by sensorimotor learning, which reflects the effect of the type of practice on the execution and the evaluation of the action. These results can be linked with our previous report, where the simultaneous practice of kinematic and dynamic distortions takes advantage of the motor performance on retention tests, indicating a more automatic control for the whole practice group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信