集合感知的群体反应模型

IF 5.1 1区 心理学 Q1 PSYCHOLOGY
Psychological review Pub Date : 2024-01-01 Epub Date: 2023-04-03 DOI:10.1037/rev0000426
Igor S Utochkin, Jeunghwan Choi, Sang Chul Chong
{"title":"集合感知的群体反应模型","authors":"Igor S Utochkin, Jeunghwan Choi, Sang Chul Chong","doi":"10.1037/rev0000426","DOIUrl":null,"url":null,"abstract":"<p><p>Ensemble representations have been considered as one of the strategies that the visual system adopts to cope with its limited capacity. Thus, they include various statistical summaries such as mean, variance, and distributional properties and are formed over many stages of visual processing. The present study proposes a population-coding model of ensemble perception to provide a theoretical and computational framework for these various facets of ensemble perception. The proposed model consists of a simple feature layer and a pooling layer. We assumed ensemble representations as population responses in the pooling layer and decoded various statistical properties from population responses. Our model successfully predicted averaging performance in orientation, size, color, and motion direction across different tasks. Furthermore, it predicted variance discrimination performance and the priming effects of feature distributions. Finally, it explained the well-known variance and set-size effects and has a potential for explaining the adaptation and clustering effects. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":" ","pages":"36-57"},"PeriodicalIF":5.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A population response model of ensemble perception.\",\"authors\":\"Igor S Utochkin, Jeunghwan Choi, Sang Chul Chong\",\"doi\":\"10.1037/rev0000426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensemble representations have been considered as one of the strategies that the visual system adopts to cope with its limited capacity. Thus, they include various statistical summaries such as mean, variance, and distributional properties and are formed over many stages of visual processing. The present study proposes a population-coding model of ensemble perception to provide a theoretical and computational framework for these various facets of ensemble perception. The proposed model consists of a simple feature layer and a pooling layer. We assumed ensemble representations as population responses in the pooling layer and decoded various statistical properties from population responses. Our model successfully predicted averaging performance in orientation, size, color, and motion direction across different tasks. Furthermore, it predicted variance discrimination performance and the priming effects of feature distributions. Finally, it explained the well-known variance and set-size effects and has a potential for explaining the adaptation and clustering effects. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\" \",\"pages\":\"36-57\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000426\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000426","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

集合表征被认为是视觉系统应对其有限容量的策略之一。因此,集合表征包括各种统计总结,如平均值、方差和分布特性,并在视觉处理的多个阶段形成。本研究提出了一个集合感知的群体编码模型,为集合感知的这些不同方面提供了一个理论和计算框架。该模型由一个简单的特征层和一个集合层组成。我们将集合表征假定为集合层中的群体反应,并从群体反应中解码出各种统计属性。我们的模型成功预测了不同任务中方位、大小、颜色和运动方向的平均表现。此外,它还预测了方差辨别性能和特征分布的引物效应。最后,它还解释了众所周知的方差效应和集合大小效应,并有可能解释适应效应和聚类效应。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A population response model of ensemble perception.

Ensemble representations have been considered as one of the strategies that the visual system adopts to cope with its limited capacity. Thus, they include various statistical summaries such as mean, variance, and distributional properties and are formed over many stages of visual processing. The present study proposes a population-coding model of ensemble perception to provide a theoretical and computational framework for these various facets of ensemble perception. The proposed model consists of a simple feature layer and a pooling layer. We assumed ensemble representations as population responses in the pooling layer and decoded various statistical properties from population responses. Our model successfully predicted averaging performance in orientation, size, color, and motion direction across different tasks. Furthermore, it predicted variance discrimination performance and the priming effects of feature distributions. Finally, it explained the well-known variance and set-size effects and has a potential for explaining the adaptation and clustering effects. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological review
Psychological review 医学-心理学
CiteScore
9.70
自引率
5.60%
发文量
97
期刊介绍: Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信