Roberto A. Abreu-Mendoza , Arthur B. Powell , K. Ann Renninger , Luis M. Rivera , John Vulic , Steve Weimar , Miriam Rosenberg-Lee
{"title":"中学生在离散非符号比例推理中的误解比他们的连续推理更能解释分数偏差:来自相关和聚类分析的证据","authors":"Roberto A. Abreu-Mendoza , Arthur B. Powell , K. Ann Renninger , Luis M. Rivera , John Vulic , Steve Weimar , Miriam Rosenberg-Lee","doi":"10.1016/j.cogpsych.2023.101575","DOIUrl":null,"url":null,"abstract":"<div><p>Early emerging nonsymbolic proportional skills have been posited as a foundational ability for later fraction learning. A positive relation between nonsymbolic and symbolic proportional reasoning has been reported, as well as successful nonsymbolic training and intervention programs enhancing fraction magnitude skills. However, little is known about the mechanisms underlying this relationship. Of particular interest are nonsymbolic representations, which can be in continuous formats that may emphasize proportional relations and in discretized formats that may prompt erroneous whole-number strategies and hamper access to fraction magnitudes. We assessed the proportional comparison skills of 159 middle-school students (mean age = 12.54 years, 43% females, 55% males, 2% other or prefer not to say) across three types of representations: (a) continuous, unsegmented bars, (b) discretized, segmented bars that allowed counting strategies, and (c) symbolic fractions. Using both correlational and cluster approaches, we also examined their relations to symbolic fraction comparison ability. Within each stimulus type, we varied proportional distance, and in the discretized and symbolic stimuli, we also manipulated whole-number congruency. We found that fraction distance across all formats modulated middle-schoolers' performance; however, whole-number information affected discretized and symbolic comparison performance. Further, continuous and discretized nonsymbolic performance was related to fraction comparison ability; however, discretized skills explained variance above and beyond the contributions of continuous skills. Finally, our cluster analyses revealed three nonsymbolic comparison profiles: students who chose the bars with the largest number of segments (whole-number bias), chance-level performers, and high performers. Crucially, students with a whole-number bias profile showed this bias in their fraction skills and failed to show any symbolic distance modulation. Together, our results indicate that the relation between nonsymbolic and symbolic proportional skills may be determined by the (mis)conceptions based on discretized representations, rather than understandings of proportional magnitudes, suggesting that interventions focusing on competence with discretized representations may show dividends for fraction understanding.</p></div>","PeriodicalId":50669,"journal":{"name":"Cognitive Psychology","volume":"143 ","pages":"Article 101575"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Middle-schoolers' misconceptions in discretized nonsymbolic proportional reasoning explain fraction biases better than their continuous reasoning: Evidence from correlation and cluster analyses\",\"authors\":\"Roberto A. Abreu-Mendoza , Arthur B. Powell , K. Ann Renninger , Luis M. Rivera , John Vulic , Steve Weimar , Miriam Rosenberg-Lee\",\"doi\":\"10.1016/j.cogpsych.2023.101575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Early emerging nonsymbolic proportional skills have been posited as a foundational ability for later fraction learning. A positive relation between nonsymbolic and symbolic proportional reasoning has been reported, as well as successful nonsymbolic training and intervention programs enhancing fraction magnitude skills. However, little is known about the mechanisms underlying this relationship. Of particular interest are nonsymbolic representations, which can be in continuous formats that may emphasize proportional relations and in discretized formats that may prompt erroneous whole-number strategies and hamper access to fraction magnitudes. We assessed the proportional comparison skills of 159 middle-school students (mean age = 12.54 years, 43% females, 55% males, 2% other or prefer not to say) across three types of representations: (a) continuous, unsegmented bars, (b) discretized, segmented bars that allowed counting strategies, and (c) symbolic fractions. Using both correlational and cluster approaches, we also examined their relations to symbolic fraction comparison ability. Within each stimulus type, we varied proportional distance, and in the discretized and symbolic stimuli, we also manipulated whole-number congruency. We found that fraction distance across all formats modulated middle-schoolers' performance; however, whole-number information affected discretized and symbolic comparison performance. Further, continuous and discretized nonsymbolic performance was related to fraction comparison ability; however, discretized skills explained variance above and beyond the contributions of continuous skills. Finally, our cluster analyses revealed three nonsymbolic comparison profiles: students who chose the bars with the largest number of segments (whole-number bias), chance-level performers, and high performers. Crucially, students with a whole-number bias profile showed this bias in their fraction skills and failed to show any symbolic distance modulation. Together, our results indicate that the relation between nonsymbolic and symbolic proportional skills may be determined by the (mis)conceptions based on discretized representations, rather than understandings of proportional magnitudes, suggesting that interventions focusing on competence with discretized representations may show dividends for fraction understanding.</p></div>\",\"PeriodicalId\":50669,\"journal\":{\"name\":\"Cognitive Psychology\",\"volume\":\"143 \",\"pages\":\"Article 101575\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010028523000336\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010028523000336","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Middle-schoolers' misconceptions in discretized nonsymbolic proportional reasoning explain fraction biases better than their continuous reasoning: Evidence from correlation and cluster analyses
Early emerging nonsymbolic proportional skills have been posited as a foundational ability for later fraction learning. A positive relation between nonsymbolic and symbolic proportional reasoning has been reported, as well as successful nonsymbolic training and intervention programs enhancing fraction magnitude skills. However, little is known about the mechanisms underlying this relationship. Of particular interest are nonsymbolic representations, which can be in continuous formats that may emphasize proportional relations and in discretized formats that may prompt erroneous whole-number strategies and hamper access to fraction magnitudes. We assessed the proportional comparison skills of 159 middle-school students (mean age = 12.54 years, 43% females, 55% males, 2% other or prefer not to say) across three types of representations: (a) continuous, unsegmented bars, (b) discretized, segmented bars that allowed counting strategies, and (c) symbolic fractions. Using both correlational and cluster approaches, we also examined their relations to symbolic fraction comparison ability. Within each stimulus type, we varied proportional distance, and in the discretized and symbolic stimuli, we also manipulated whole-number congruency. We found that fraction distance across all formats modulated middle-schoolers' performance; however, whole-number information affected discretized and symbolic comparison performance. Further, continuous and discretized nonsymbolic performance was related to fraction comparison ability; however, discretized skills explained variance above and beyond the contributions of continuous skills. Finally, our cluster analyses revealed three nonsymbolic comparison profiles: students who chose the bars with the largest number of segments (whole-number bias), chance-level performers, and high performers. Crucially, students with a whole-number bias profile showed this bias in their fraction skills and failed to show any symbolic distance modulation. Together, our results indicate that the relation between nonsymbolic and symbolic proportional skills may be determined by the (mis)conceptions based on discretized representations, rather than understandings of proportional magnitudes, suggesting that interventions focusing on competence with discretized representations may show dividends for fraction understanding.
期刊介绍:
Cognitive Psychology is concerned with advances in the study of attention, memory, language processing, perception, problem solving, and thinking. Cognitive Psychology specializes in extensive articles that have a major impact on cognitive theory and provide new theoretical advances.
Research Areas include:
• Artificial intelligence
• Developmental psychology
• Linguistics
• Neurophysiology
• Social psychology.