Yameng Zhu, Boyao Wang, Jian Chen, Jun He, Xilong Qiu
{"title":"三种介孔二氧化硅微球的快速合成及其缓释性能。","authors":"Yameng Zhu, Boyao Wang, Jian Chen, Jun He, Xilong Qiu","doi":"10.2174/1567201819666220616121602","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nMesoporous silica nanoparticles (MSN) are one of the most promising carriers for drug delivery. MSNs have been widely used in pharmaceutical research as drug carriers because of their large pore volume, high surface area, excellent biocompatibility, nontoxicity, ease to functionalize, and sustained release effects. MSNs have attracted much attention during drug delivery because of their special structure.\n\n\nOBJECTIVE\nThe present study aimed to synthesize mesoporous silica nanoparticles (MSN), dendritic mesoporous silica nanoparticles (DMSN) and hollow mesoporous silica nanoparticles (HMSN) through facile methods, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug.\n\n\nMETHODS\nMSN, DMSN, and HMSN were characterized by SEM, TEM, FT-IR, nitrogen adsorption-desorption isotherms, XRD, and zeta potential methods. Subsequently, puerarin (PUE) was used as the active ingredient and loaded into the three mesoporous materials, respectively. And the drug delivery behavior was measured in PBS solution with different pH values. The sustained-release properties of MSN, DMSN, and HMSN loaded with PUE were investigated. Finally, the biocompatibility and stability of MSN, DMSN, and HMSN were studied by MTT assay and hemolysis assay.\n\n\nRESULTS\nOur results showed that MSN, DMSN, and HMSN were successfully synthesized and the three types of mesoporous silica nanoparticles had higher drug loading and encapsulation efficiency. According to the first-order release equation curve and Higuchi equation parameters, the results showed that the PUE-loaded MSN, DMSN, and HMSN exhibited sustained-release properties. Finally, MTT and hemolysis methods displayed that MSN, DMSN, and HMSN had good biocompatibility and stability.\n\n\nCONCLUSION\nIn this study, MSN, DMSN, and HMSN were successfully synthesized, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug, we provided a theoretical and practical basis for the application of PUE.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 9","pages":"1337-1350"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Synthesis of Three Types of Mesoporous Silica Microspheres as Drug Delivery Carriers and their Sustained-Release Properties.\",\"authors\":\"Yameng Zhu, Boyao Wang, Jian Chen, Jun He, Xilong Qiu\",\"doi\":\"10.2174/1567201819666220616121602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nMesoporous silica nanoparticles (MSN) are one of the most promising carriers for drug delivery. MSNs have been widely used in pharmaceutical research as drug carriers because of their large pore volume, high surface area, excellent biocompatibility, nontoxicity, ease to functionalize, and sustained release effects. MSNs have attracted much attention during drug delivery because of their special structure.\\n\\n\\nOBJECTIVE\\nThe present study aimed to synthesize mesoporous silica nanoparticles (MSN), dendritic mesoporous silica nanoparticles (DMSN) and hollow mesoporous silica nanoparticles (HMSN) through facile methods, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug.\\n\\n\\nMETHODS\\nMSN, DMSN, and HMSN were characterized by SEM, TEM, FT-IR, nitrogen adsorption-desorption isotherms, XRD, and zeta potential methods. Subsequently, puerarin (PUE) was used as the active ingredient and loaded into the three mesoporous materials, respectively. And the drug delivery behavior was measured in PBS solution with different pH values. The sustained-release properties of MSN, DMSN, and HMSN loaded with PUE were investigated. Finally, the biocompatibility and stability of MSN, DMSN, and HMSN were studied by MTT assay and hemolysis assay.\\n\\n\\nRESULTS\\nOur results showed that MSN, DMSN, and HMSN were successfully synthesized and the three types of mesoporous silica nanoparticles had higher drug loading and encapsulation efficiency. According to the first-order release equation curve and Higuchi equation parameters, the results showed that the PUE-loaded MSN, DMSN, and HMSN exhibited sustained-release properties. Finally, MTT and hemolysis methods displayed that MSN, DMSN, and HMSN had good biocompatibility and stability.\\n\\n\\nCONCLUSION\\nIn this study, MSN, DMSN, and HMSN were successfully synthesized, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug, we provided a theoretical and practical basis for the application of PUE.\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\"20 9\",\"pages\":\"1337-1350\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201819666220616121602\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201819666220616121602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Facile Synthesis of Three Types of Mesoporous Silica Microspheres as Drug Delivery Carriers and their Sustained-Release Properties.
BACKGROUND
Mesoporous silica nanoparticles (MSN) are one of the most promising carriers for drug delivery. MSNs have been widely used in pharmaceutical research as drug carriers because of their large pore volume, high surface area, excellent biocompatibility, nontoxicity, ease to functionalize, and sustained release effects. MSNs have attracted much attention during drug delivery because of their special structure.
OBJECTIVE
The present study aimed to synthesize mesoporous silica nanoparticles (MSN), dendritic mesoporous silica nanoparticles (DMSN) and hollow mesoporous silica nanoparticles (HMSN) through facile methods, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug.
METHODS
MSN, DMSN, and HMSN were characterized by SEM, TEM, FT-IR, nitrogen adsorption-desorption isotherms, XRD, and zeta potential methods. Subsequently, puerarin (PUE) was used as the active ingredient and loaded into the three mesoporous materials, respectively. And the drug delivery behavior was measured in PBS solution with different pH values. The sustained-release properties of MSN, DMSN, and HMSN loaded with PUE were investigated. Finally, the biocompatibility and stability of MSN, DMSN, and HMSN were studied by MTT assay and hemolysis assay.
RESULTS
Our results showed that MSN, DMSN, and HMSN were successfully synthesized and the three types of mesoporous silica nanoparticles had higher drug loading and encapsulation efficiency. According to the first-order release equation curve and Higuchi equation parameters, the results showed that the PUE-loaded MSN, DMSN, and HMSN exhibited sustained-release properties. Finally, MTT and hemolysis methods displayed that MSN, DMSN, and HMSN had good biocompatibility and stability.
CONCLUSION
In this study, MSN, DMSN, and HMSN were successfully synthesized, and to compare the drug release properties of nano-porous silica with different pore structures as a stroma for PUE drug, we provided a theoretical and practical basis for the application of PUE.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.