{"title":"鹌鹑 PMEL 基因表达及单核苷酸多态性与羽色的关联分析","authors":"Zhiwen Yuan, Xiaohui Zhang, Youzhi Pang, Yanxia Qi","doi":"10.1080/10495398.2023.2221697","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (<i>p</i> < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (<i>p</i> < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"5001-5010"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association analysis of PMEL gene expression and single nucleotide polymorphism with plumage color in quail.\",\"authors\":\"Zhiwen Yuan, Xiaohui Zhang, Youzhi Pang, Yanxia Qi\",\"doi\":\"10.1080/10495398.2023.2221697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (<i>p</i> < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (<i>p</i> < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.</p>\",\"PeriodicalId\":7836,\"journal\":{\"name\":\"Animal Biotechnology\",\"volume\":\" \",\"pages\":\"5001-5010\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10495398.2023.2221697\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2023.2221697","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Association analysis of PMEL gene expression and single nucleotide polymorphism with plumage color in quail.
To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (p < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (p < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes