单细胞多组学测序及其在神经系统研究中的应用。

Chaoyang Wang, Xiaoying Fan
{"title":"单细胞多组学测序及其在神经系统研究中的应用。","authors":"Chaoyang Wang,&nbsp;Xiaoying Fan","doi":"10.52601/bpr.2021.210031","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell sequencing has become one of the most powerful and popular techniques in dissecting molecular heterogeneity and modeling the cellular architecture of a biological system. During the past twenty years, the throughput of single-cell sequencing has increased from hundreds of cells to over tens of thousands of cells in parallel. Moreover, this technology has been developed from sequencing transcriptome to measure different omics such as DNA methylome, chromatin accessibility, and so on. Currently, multi-omics which can analyze different omics in the same cell is rapidly advancing. This work advances the study of many biosystems, including the nervous system. Here, we review current single-cell multi-omics sequencing techniques and describe how they improve our understanding of the nervous system. Finally, we discuss the open scientific questions in neural research that may be answered through further improvement of single-cell multi-omics sequencing technology.</p>","PeriodicalId":59621,"journal":{"name":"生物物理学报:英文版","volume":"8 3","pages":"136-149"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell multi-omics sequencing and its applications in studying the nervous system.\",\"authors\":\"Chaoyang Wang,&nbsp;Xiaoying Fan\",\"doi\":\"10.52601/bpr.2021.210031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell sequencing has become one of the most powerful and popular techniques in dissecting molecular heterogeneity and modeling the cellular architecture of a biological system. During the past twenty years, the throughput of single-cell sequencing has increased from hundreds of cells to over tens of thousands of cells in parallel. Moreover, this technology has been developed from sequencing transcriptome to measure different omics such as DNA methylome, chromatin accessibility, and so on. Currently, multi-omics which can analyze different omics in the same cell is rapidly advancing. This work advances the study of many biosystems, including the nervous system. Here, we review current single-cell multi-omics sequencing techniques and describe how they improve our understanding of the nervous system. Finally, we discuss the open scientific questions in neural research that may be answered through further improvement of single-cell multi-omics sequencing technology.</p>\",\"PeriodicalId\":59621,\"journal\":{\"name\":\"生物物理学报:英文版\",\"volume\":\"8 3\",\"pages\":\"136-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物物理学报:英文版\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2021.210031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学报:英文版","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2021.210031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞测序已成为剖析分子异质性和模拟生物系统细胞结构的最强大和最流行的技术之一。在过去的二十年里,单细胞测序的吞吐量已经从数百个细胞并行增加到数万个细胞。此外,这项技术已经从测序转录组发展到测量不同的组学,如DNA甲基组、染色质可及性等。目前,可以分析同一细胞中不同组学的多组学正在迅速发展。这项工作推进了包括神经系统在内的许多生物系统的研究。在这里,我们回顾了目前的单细胞多组学测序技术,并描述了它们如何提高我们对神经系统的理解。最后,我们讨论了神经研究中悬而未决的科学问题,这些问题可以通过进一步改进单细胞多组学测序技术来回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-cell multi-omics sequencing and its applications in studying the nervous system.

Single-cell multi-omics sequencing and its applications in studying the nervous system.

Single-cell multi-omics sequencing and its applications in studying the nervous system.

Single-cell sequencing has become one of the most powerful and popular techniques in dissecting molecular heterogeneity and modeling the cellular architecture of a biological system. During the past twenty years, the throughput of single-cell sequencing has increased from hundreds of cells to over tens of thousands of cells in parallel. Moreover, this technology has been developed from sequencing transcriptome to measure different omics such as DNA methylome, chromatin accessibility, and so on. Currently, multi-omics which can analyze different omics in the same cell is rapidly advancing. This work advances the study of many biosystems, including the nervous system. Here, we review current single-cell multi-omics sequencing techniques and describe how they improve our understanding of the nervous system. Finally, we discuss the open scientific questions in neural research that may be answered through further improvement of single-cell multi-omics sequencing technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
117
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信