{"title":"在模型拟合度评估中使用非加权近似误差测量的优势。","authors":"Dirk Lubbe","doi":"10.1007/s11336-023-09909-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fit indices are highly frequently used for assessing the goodness of fit of latent variable models. Most prominent fit indices, such as the root-mean-square error of approximation (RMSEA) or the comparative fit index (CFI), are based on a noncentrality parameter estimate derived from the model fit statistic. While a noncentrality parameter estimate is well suited for quantifying the amount of systematic error, the complex weighting function involved in its calculation makes indices derived from it challenging to interpret. Moreover, noncentrality-parameter-based fit indices yield systematically different values, depending on the indicators' level of measurement. For instance, RMSEA and CFI yield more favorable fit indices for models with categorical as compared to metric variables under otherwise identical conditions. In the present article, approaches for obtaining an approximation discrepancy estimate that is independent from any specific weighting function are considered. From these unweighted approximation error estimates, fit indices analogous to RMSEA and CFI are calculated and their finite sample properties are investigated using simulation studies. The results illustrate that the new fit indices consistently estimate their true value which, in contrast to other fit indices, is the same value for metric and categorical variables. Advantages with respect to interpretability are discussed and cutoff criteria for the new indices are considered.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"88 2","pages":"413-433"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advantages of Using Unweighted Approximation Error Measures for Model Fit Assessment.\",\"authors\":\"Dirk Lubbe\",\"doi\":\"10.1007/s11336-023-09909-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fit indices are highly frequently used for assessing the goodness of fit of latent variable models. Most prominent fit indices, such as the root-mean-square error of approximation (RMSEA) or the comparative fit index (CFI), are based on a noncentrality parameter estimate derived from the model fit statistic. While a noncentrality parameter estimate is well suited for quantifying the amount of systematic error, the complex weighting function involved in its calculation makes indices derived from it challenging to interpret. Moreover, noncentrality-parameter-based fit indices yield systematically different values, depending on the indicators' level of measurement. For instance, RMSEA and CFI yield more favorable fit indices for models with categorical as compared to metric variables under otherwise identical conditions. In the present article, approaches for obtaining an approximation discrepancy estimate that is independent from any specific weighting function are considered. From these unweighted approximation error estimates, fit indices analogous to RMSEA and CFI are calculated and their finite sample properties are investigated using simulation studies. The results illustrate that the new fit indices consistently estimate their true value which, in contrast to other fit indices, is the same value for metric and categorical variables. Advantages with respect to interpretability are discussed and cutoff criteria for the new indices are considered.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\"88 2\",\"pages\":\"413-433\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09909-6\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09909-6","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Advantages of Using Unweighted Approximation Error Measures for Model Fit Assessment.
Fit indices are highly frequently used for assessing the goodness of fit of latent variable models. Most prominent fit indices, such as the root-mean-square error of approximation (RMSEA) or the comparative fit index (CFI), are based on a noncentrality parameter estimate derived from the model fit statistic. While a noncentrality parameter estimate is well suited for quantifying the amount of systematic error, the complex weighting function involved in its calculation makes indices derived from it challenging to interpret. Moreover, noncentrality-parameter-based fit indices yield systematically different values, depending on the indicators' level of measurement. For instance, RMSEA and CFI yield more favorable fit indices for models with categorical as compared to metric variables under otherwise identical conditions. In the present article, approaches for obtaining an approximation discrepancy estimate that is independent from any specific weighting function are considered. From these unweighted approximation error estimates, fit indices analogous to RMSEA and CFI are calculated and their finite sample properties are investigated using simulation studies. The results illustrate that the new fit indices consistently estimate their true value which, in contrast to other fit indices, is the same value for metric and categorical variables. Advantages with respect to interpretability are discussed and cutoff criteria for the new indices are considered.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.