Sungyoon Jung, Achyut J. Raghavendra, Anil K. Patri
{"title":"使用TGA-FTIR-GC/MS和拉曼光谱对常见聚合物进行综合分析,建立用于微塑料和纳米塑料鉴定、表征和定量的数据库","authors":"Sungyoon Jung, Achyut J. Raghavendra, Anil K. Patri","doi":"10.1016/j.impact.2023.100467","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental contamination by micro- and nanoplastics (MNPs) is well documented with potential for their increased accumulation globally. Growing public concern over environmental, ecological, and human exposure to MNPs has led to exponential increase in publications, news articles, and reports (<span>Casillas et al., 2023</span>). Significant knowledge gap exists in standardized analytical methods for the identification and quantification of MNPs from real world environmental samples. Here, we report comprehensive datasets utilizing thermogravimetric analyzer (TGA) coupled to a Fourier transformed infrared spectrometer (FTIR) and a gas chromatography/mass spectrometer (GC/MS) with corresponding Raman spectral data for the most common polymers documented to be present in the environment (35 plastics of 12 polymer types), to serve as a base line reference for the identification and quantitation of MNPs. Various parameters for TGA-FTIR-GC/MS data acquisition were optimized. Commercial consumer plastic product compositions were identified using this analytical database. Case studies to showcase the utility of the method for polymer mixtures analysis is included. This dataset would serve towards the development of a collaborative, global, comprehensive, and curated public database for the identification of various MNPs and mixtures.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"30 ","pages":"Article 100467"},"PeriodicalIF":4.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comprehensive analysis of common polymers using hyphenated TGA-FTIR-GC/MS and Raman spectroscopy towards a database for micro- and nanoplastics identification, characterization, and quantitation\",\"authors\":\"Sungyoon Jung, Achyut J. Raghavendra, Anil K. Patri\",\"doi\":\"10.1016/j.impact.2023.100467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmental contamination by micro- and nanoplastics (MNPs) is well documented with potential for their increased accumulation globally. Growing public concern over environmental, ecological, and human exposure to MNPs has led to exponential increase in publications, news articles, and reports (<span>Casillas et al., 2023</span>). Significant knowledge gap exists in standardized analytical methods for the identification and quantification of MNPs from real world environmental samples. Here, we report comprehensive datasets utilizing thermogravimetric analyzer (TGA) coupled to a Fourier transformed infrared spectrometer (FTIR) and a gas chromatography/mass spectrometer (GC/MS) with corresponding Raman spectral data for the most common polymers documented to be present in the environment (35 plastics of 12 polymer types), to serve as a base line reference for the identification and quantitation of MNPs. Various parameters for TGA-FTIR-GC/MS data acquisition were optimized. Commercial consumer plastic product compositions were identified using this analytical database. Case studies to showcase the utility of the method for polymer mixtures analysis is included. This dataset would serve towards the development of a collaborative, global, comprehensive, and curated public database for the identification of various MNPs and mixtures.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"30 \",\"pages\":\"Article 100467\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074823000186\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074823000186","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comprehensive analysis of common polymers using hyphenated TGA-FTIR-GC/MS and Raman spectroscopy towards a database for micro- and nanoplastics identification, characterization, and quantitation
Environmental contamination by micro- and nanoplastics (MNPs) is well documented with potential for their increased accumulation globally. Growing public concern over environmental, ecological, and human exposure to MNPs has led to exponential increase in publications, news articles, and reports (Casillas et al., 2023). Significant knowledge gap exists in standardized analytical methods for the identification and quantification of MNPs from real world environmental samples. Here, we report comprehensive datasets utilizing thermogravimetric analyzer (TGA) coupled to a Fourier transformed infrared spectrometer (FTIR) and a gas chromatography/mass spectrometer (GC/MS) with corresponding Raman spectral data for the most common polymers documented to be present in the environment (35 plastics of 12 polymer types), to serve as a base line reference for the identification and quantitation of MNPs. Various parameters for TGA-FTIR-GC/MS data acquisition were optimized. Commercial consumer plastic product compositions were identified using this analytical database. Case studies to showcase the utility of the method for polymer mixtures analysis is included. This dataset would serve towards the development of a collaborative, global, comprehensive, and curated public database for the identification of various MNPs and mixtures.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.