Opeyemi G Oso, Joseph O Sunday, Alexander B Odaibo
{"title":"热带水生生境中纳塔利姆(lynaea natalensis, Krauss, 1848)的时间模拟。","authors":"Opeyemi G Oso, Joseph O Sunday, Alexander B Odaibo","doi":"10.4102/ojvr.v90i1.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Lymnaea natalensis is the only snail intermediate host of Fasciola gigantica, the causative agent of fascioliasis, in Nigeria. The species also serves as intermediate host for many other African trematode species of medical and veterinary importance, and it is found throughout the country. However, there is no detailed information on the factors that influence its distribution and seasonal abundance in the tropical aquatic habitats in Nigeria. This study used the geographic information system and remotely sensed data to develop models for predicting the distribution of L. natalensis in South-Western Nigeria. Both land surface temperature (LST) and normalised difference vegetation index (NDVI) were extracted from Landsat satellite imagery; other variables (slope and elevation) were extracted from a digital elevation model (DEM) while rainfall data were retrieved from the European Meteorology Research Programme (EMRP). These environmental variables were integrated into a geographic information system (GIS) to predict suitable habitats of L. natalensis using exploratory regression. A total of 1410 L. natalensis snails were collected vis-à-vis 22 sampling sites. Built-up areas recorded more L. natalensis compared with farmlands. There was no significant difference in the abundance of snails with season (p 0.05). The regression models showed that rainfall, NDVI, and slope were predictors of L. natalensis distribution. The habitats suitable for L. natalensis were central areas, while areas to the north and south were not suitable for L. natalensis.Contribution: The predictive risk models of L. natalensis in the study will be useful in mapping other areas where the snail sampling could not be conducted.</p>","PeriodicalId":54685,"journal":{"name":"Onderstepoort Journal of Veterinary Research","volume":"90 1","pages":"e1-e13"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244977/pdf/","citationCount":"1","resultStr":"{\"title\":\"Temporal modelling of Lymnaea natalensis (Krauss, 1848) in tropical aquatic habitats.\",\"authors\":\"Opeyemi G Oso, Joseph O Sunday, Alexander B Odaibo\",\"doi\":\"10.4102/ojvr.v90i1.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lymnaea natalensis is the only snail intermediate host of Fasciola gigantica, the causative agent of fascioliasis, in Nigeria. The species also serves as intermediate host for many other African trematode species of medical and veterinary importance, and it is found throughout the country. However, there is no detailed information on the factors that influence its distribution and seasonal abundance in the tropical aquatic habitats in Nigeria. This study used the geographic information system and remotely sensed data to develop models for predicting the distribution of L. natalensis in South-Western Nigeria. Both land surface temperature (LST) and normalised difference vegetation index (NDVI) were extracted from Landsat satellite imagery; other variables (slope and elevation) were extracted from a digital elevation model (DEM) while rainfall data were retrieved from the European Meteorology Research Programme (EMRP). These environmental variables were integrated into a geographic information system (GIS) to predict suitable habitats of L. natalensis using exploratory regression. A total of 1410 L. natalensis snails were collected vis-à-vis 22 sampling sites. Built-up areas recorded more L. natalensis compared with farmlands. There was no significant difference in the abundance of snails with season (p 0.05). The regression models showed that rainfall, NDVI, and slope were predictors of L. natalensis distribution. The habitats suitable for L. natalensis were central areas, while areas to the north and south were not suitable for L. natalensis.Contribution: The predictive risk models of L. natalensis in the study will be useful in mapping other areas where the snail sampling could not be conducted.</p>\",\"PeriodicalId\":54685,\"journal\":{\"name\":\"Onderstepoort Journal of Veterinary Research\",\"volume\":\"90 1\",\"pages\":\"e1-e13\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244977/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onderstepoort Journal of Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4102/ojvr.v90i1.2023\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onderstepoort Journal of Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4102/ojvr.v90i1.2023","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Temporal modelling of Lymnaea natalensis (Krauss, 1848) in tropical aquatic habitats.
Lymnaea natalensis is the only snail intermediate host of Fasciola gigantica, the causative agent of fascioliasis, in Nigeria. The species also serves as intermediate host for many other African trematode species of medical and veterinary importance, and it is found throughout the country. However, there is no detailed information on the factors that influence its distribution and seasonal abundance in the tropical aquatic habitats in Nigeria. This study used the geographic information system and remotely sensed data to develop models for predicting the distribution of L. natalensis in South-Western Nigeria. Both land surface temperature (LST) and normalised difference vegetation index (NDVI) were extracted from Landsat satellite imagery; other variables (slope and elevation) were extracted from a digital elevation model (DEM) while rainfall data were retrieved from the European Meteorology Research Programme (EMRP). These environmental variables were integrated into a geographic information system (GIS) to predict suitable habitats of L. natalensis using exploratory regression. A total of 1410 L. natalensis snails were collected vis-à-vis 22 sampling sites. Built-up areas recorded more L. natalensis compared with farmlands. There was no significant difference in the abundance of snails with season (p 0.05). The regression models showed that rainfall, NDVI, and slope were predictors of L. natalensis distribution. The habitats suitable for L. natalensis were central areas, while areas to the north and south were not suitable for L. natalensis.Contribution: The predictive risk models of L. natalensis in the study will be useful in mapping other areas where the snail sampling could not be conducted.
期刊介绍:
The Onderstepoort Journal of Veterinary Research, is the official publication of the Onderstepoort Veterinary Institute. While it considers submissions from any geographic region, its focus is on Africa and the infectious and parasitic diseases and disease vectors that affect livestock and wildlife on the continent.