Alessandro B Melchiorre, David Penz, Christian Ganhör, Oleg Lesota, Vasco Fragoso, Florian Fritzl, Emilia Parada-Cabaleiro, Franz Schubert, Markus Schedl
{"title":"情绪感知音乐塔块(EmoMTB):用于音乐发现和推荐的智能视听界面。","authors":"Alessandro B Melchiorre, David Penz, Christian Ganhör, Oleg Lesota, Vasco Fragoso, Florian Fritzl, Emilia Parada-Cabaleiro, Franz Schubert, Markus Schedl","doi":"10.1007/s13735-023-00275-8","DOIUrl":null,"url":null,"abstract":"<p><p>Music listening has experienced a sharp increase during the last decade thanks to music streaming and recommendation services. While they offer text-based search functionality and provide recommendation lists of remarkable utility, their typical mode of interaction is unidimensional, i.e., they provide lists of consecutive tracks, which are commonly inspected in sequential order by the user. The user experience with such systems is heavily affected by cognition biases (e.g., position bias, human tendency to pay more attention to first positions of ordered lists) as well as algorithmic biases (e.g., popularity bias, the tendency of recommender systems to overrepresent popular items). This may cause dissatisfaction among the users by disabling them to find novel music to enjoy. In light of such systems and biases, we propose an intelligent audiovisual music exploration system named EmoMTB . It allows the user to browse the entirety of a given collection in a free nonlinear fashion. The navigation is assisted by a set of personalized emotion-aware recommendations, which serve as starting points for the exploration experience. EmoMTB adopts the metaphor of a city, in which each track (visualized as a colored cube) represents one floor of a building. Highly similar tracks are located in the same building; moderately similar ones form neighborhoods that mostly correspond to genres. Tracks situated between distinct neighborhoods create a gradual transition between genres. Users can navigate this music city using their smartphones as control devices. They can explore districts of well-known music or decide to leave their comfort zone. In addition, EmoMTB integrates an emotion-aware music recommendation system that re-ranks the list of suggested starting points for exploration according to the user's self-identified emotion or the collective emotion expressed in EmoMTB 's Twitter channel. Evaluation of EmoMTB has been carried out in a threefold way: by quantifying the homogeneity of the clustering underlying the construction of the city, by measuring the accuracy of the emotion predictor, and by carrying out a web-based survey composed of open questions to obtain qualitative feedback from users.</p>","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"12 1","pages":"13"},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emotion-aware music tower blocks (EmoMTB ): an intelligent audiovisual interface for music discovery and recommendation.\",\"authors\":\"Alessandro B Melchiorre, David Penz, Christian Ganhör, Oleg Lesota, Vasco Fragoso, Florian Fritzl, Emilia Parada-Cabaleiro, Franz Schubert, Markus Schedl\",\"doi\":\"10.1007/s13735-023-00275-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Music listening has experienced a sharp increase during the last decade thanks to music streaming and recommendation services. While they offer text-based search functionality and provide recommendation lists of remarkable utility, their typical mode of interaction is unidimensional, i.e., they provide lists of consecutive tracks, which are commonly inspected in sequential order by the user. The user experience with such systems is heavily affected by cognition biases (e.g., position bias, human tendency to pay more attention to first positions of ordered lists) as well as algorithmic biases (e.g., popularity bias, the tendency of recommender systems to overrepresent popular items). This may cause dissatisfaction among the users by disabling them to find novel music to enjoy. In light of such systems and biases, we propose an intelligent audiovisual music exploration system named EmoMTB . It allows the user to browse the entirety of a given collection in a free nonlinear fashion. The navigation is assisted by a set of personalized emotion-aware recommendations, which serve as starting points for the exploration experience. EmoMTB adopts the metaphor of a city, in which each track (visualized as a colored cube) represents one floor of a building. Highly similar tracks are located in the same building; moderately similar ones form neighborhoods that mostly correspond to genres. Tracks situated between distinct neighborhoods create a gradual transition between genres. Users can navigate this music city using their smartphones as control devices. They can explore districts of well-known music or decide to leave their comfort zone. In addition, EmoMTB integrates an emotion-aware music recommendation system that re-ranks the list of suggested starting points for exploration according to the user's self-identified emotion or the collective emotion expressed in EmoMTB 's Twitter channel. Evaluation of EmoMTB has been carried out in a threefold way: by quantifying the homogeneity of the clustering underlying the construction of the city, by measuring the accuracy of the emotion predictor, and by carrying out a web-based survey composed of open questions to obtain qualitative feedback from users.</p>\",\"PeriodicalId\":48501,\"journal\":{\"name\":\"International Journal of Multimedia Information Retrieval\",\"volume\":\"12 1\",\"pages\":\"13\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multimedia Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13735-023-00275-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multimedia Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13735-023-00275-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Emotion-aware music tower blocks (EmoMTB ): an intelligent audiovisual interface for music discovery and recommendation.
Music listening has experienced a sharp increase during the last decade thanks to music streaming and recommendation services. While they offer text-based search functionality and provide recommendation lists of remarkable utility, their typical mode of interaction is unidimensional, i.e., they provide lists of consecutive tracks, which are commonly inspected in sequential order by the user. The user experience with such systems is heavily affected by cognition biases (e.g., position bias, human tendency to pay more attention to first positions of ordered lists) as well as algorithmic biases (e.g., popularity bias, the tendency of recommender systems to overrepresent popular items). This may cause dissatisfaction among the users by disabling them to find novel music to enjoy. In light of such systems and biases, we propose an intelligent audiovisual music exploration system named EmoMTB . It allows the user to browse the entirety of a given collection in a free nonlinear fashion. The navigation is assisted by a set of personalized emotion-aware recommendations, which serve as starting points for the exploration experience. EmoMTB adopts the metaphor of a city, in which each track (visualized as a colored cube) represents one floor of a building. Highly similar tracks are located in the same building; moderately similar ones form neighborhoods that mostly correspond to genres. Tracks situated between distinct neighborhoods create a gradual transition between genres. Users can navigate this music city using their smartphones as control devices. They can explore districts of well-known music or decide to leave their comfort zone. In addition, EmoMTB integrates an emotion-aware music recommendation system that re-ranks the list of suggested starting points for exploration according to the user's self-identified emotion or the collective emotion expressed in EmoMTB 's Twitter channel. Evaluation of EmoMTB has been carried out in a threefold way: by quantifying the homogeneity of the clustering underlying the construction of the city, by measuring the accuracy of the emotion predictor, and by carrying out a web-based survey composed of open questions to obtain qualitative feedback from users.
期刊介绍:
Aims and Scope
The International Journal of Multimedia Information Retrieval (IJMIR) is a scholarly archival journal publishing original, peer-reviewed research contributions. Its editorial board strives to present the most important research results in areas within the field of multimedia information retrieval. Core areas include exploration, search, and mining in general collections of multimedia consisting of information from the WWW to scientific imaging to personal archives. Comprehensive review and survey papers that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.
Relevant topics include
Image and video retrieval - theory, algorithms, and systems
Social media interaction and retrieval - collaborative filtering, social voting and ranking
Music and audio retrieval - theory, algorithms, and systems
Scientific and Bio-imaging - MRI, X-ray, ultrasound imaging analysis and retrieval
Semantic learning - visual concept detection, object recognition, and tag learning
Exploration of media archives - browsing, experiential computing
Interfaces - multimedia exploration, visualization, query and retrieval
Multimedia mining - life logs, WWW media mining, pervasive media analysis
Interactive search - interactive learning and relevance feedback in multimedia retrieval
Distributed and high performance media search - efficient and very large scale search
Applications - preserving cultural heritage, 3D graphics models, etc.
Editorial Policies:
We aim for a fast decision time (less than 4 months for the initial decision)
There are no page charges in IJMIR.
Papers are published on line in advance of print publication.
Academic, industrial researchers, and practitioners involved with multimedia search, exploration, and mining will find IJMIR to be an essential source for important results in the field.