Antonella Motta, Rosario Barone, Filippo Macaluso, Filippo Giambalvo, Francesco Pecoraro, Patrizia Di Marco, Giovanni Cassata, Roberto Puleio, Claudio Migliaresi, Annalisa Guercio, Valentina Di Felice
{"title":"丝基基质和c- kit阳性心脏祖细胞用于细胞化丝素蛋白支架:体内模型的研究。","authors":"Antonella Motta, Rosario Barone, Filippo Macaluso, Filippo Giambalvo, Francesco Pecoraro, Patrizia Di Marco, Giovanni Cassata, Roberto Puleio, Claudio Migliaresi, Annalisa Guercio, Valentina Di Felice","doi":"10.1159/000522568","DOIUrl":null,"url":null,"abstract":"<p><p>The production of a cellularized silk fibroin scaffold is very difficult because it is actually impossible to differentiate cells into a well-organized cardiac tissue. Without vascularization, not only do cell masses fail to grow, but they may also exhibit an area of necrosis, indicating a lack of oxygen and nutrients. In the present study, we used the so-called tyrosine protein kinase kit (c-Kit)-positive cardiac progenitor cells (CPCs) to generate cardiac cellularized silk fibroin scaffolds, multipotent cells isolated from the adult heart to date that can show some degree of differentiation toward the cardiac phenotype. To test their ability to differentiate into the cardiac phenotype in vivo as well, CPC and collagen organoid-like masses were implanted into nude mice and their behavior observed. Since the 3-dimensional structure of cardiac tissue can be preserved by scaffolds, we prepared in parallel different silk fibroin scaffolds with 3 different geometries and tested their behavior in 3 different models of immunosuppressed animals. Unfortunately, CPC cellularized silk fibroin scaffolds cannot be used in vivo. CPCs implanted alone or in collagen type I gel were destroyed by CD3+ lymphocyte aggregates, whereas the porous and partially oriented scaffolds elicited a consistent foreign body response characterized by giant cells. Only the electrospun meshes were resistant to the foreign body reaction. In conclusion, c-Kit-positive CPCs, although expressing a good level of cardiac differentiation markers in vitro with or without fibroin meshes, are not suitable for an in vivo model of cardiac organoids because they are degraded by a T-cell-mediated immune response. Even scaffolds which may preserve the survival of these cells in vivo also induced a host response. However, among the tested scaffolds, the electrospun meshes (F-scaffold) induced a lower response compared to all the other tested structures.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Silk-Based Matrices and c-Kit-Positive Cardiac Progenitor Cells for a Cellularized Silk Fibroin Scaffold: Study of an in vivo Model.\",\"authors\":\"Antonella Motta, Rosario Barone, Filippo Macaluso, Filippo Giambalvo, Francesco Pecoraro, Patrizia Di Marco, Giovanni Cassata, Roberto Puleio, Claudio Migliaresi, Annalisa Guercio, Valentina Di Felice\",\"doi\":\"10.1159/000522568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of a cellularized silk fibroin scaffold is very difficult because it is actually impossible to differentiate cells into a well-organized cardiac tissue. Without vascularization, not only do cell masses fail to grow, but they may also exhibit an area of necrosis, indicating a lack of oxygen and nutrients. In the present study, we used the so-called tyrosine protein kinase kit (c-Kit)-positive cardiac progenitor cells (CPCs) to generate cardiac cellularized silk fibroin scaffolds, multipotent cells isolated from the adult heart to date that can show some degree of differentiation toward the cardiac phenotype. To test their ability to differentiate into the cardiac phenotype in vivo as well, CPC and collagen organoid-like masses were implanted into nude mice and their behavior observed. Since the 3-dimensional structure of cardiac tissue can be preserved by scaffolds, we prepared in parallel different silk fibroin scaffolds with 3 different geometries and tested their behavior in 3 different models of immunosuppressed animals. Unfortunately, CPC cellularized silk fibroin scaffolds cannot be used in vivo. CPCs implanted alone or in collagen type I gel were destroyed by CD3+ lymphocyte aggregates, whereas the porous and partially oriented scaffolds elicited a consistent foreign body response characterized by giant cells. Only the electrospun meshes were resistant to the foreign body reaction. In conclusion, c-Kit-positive CPCs, although expressing a good level of cardiac differentiation markers in vitro with or without fibroin meshes, are not suitable for an in vivo model of cardiac organoids because they are degraded by a T-cell-mediated immune response. Even scaffolds which may preserve the survival of these cells in vivo also induced a host response. However, among the tested scaffolds, the electrospun meshes (F-scaffold) induced a lower response compared to all the other tested structures.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000522568\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000522568","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Silk-Based Matrices and c-Kit-Positive Cardiac Progenitor Cells for a Cellularized Silk Fibroin Scaffold: Study of an in vivo Model.
The production of a cellularized silk fibroin scaffold is very difficult because it is actually impossible to differentiate cells into a well-organized cardiac tissue. Without vascularization, not only do cell masses fail to grow, but they may also exhibit an area of necrosis, indicating a lack of oxygen and nutrients. In the present study, we used the so-called tyrosine protein kinase kit (c-Kit)-positive cardiac progenitor cells (CPCs) to generate cardiac cellularized silk fibroin scaffolds, multipotent cells isolated from the adult heart to date that can show some degree of differentiation toward the cardiac phenotype. To test their ability to differentiate into the cardiac phenotype in vivo as well, CPC and collagen organoid-like masses were implanted into nude mice and their behavior observed. Since the 3-dimensional structure of cardiac tissue can be preserved by scaffolds, we prepared in parallel different silk fibroin scaffolds with 3 different geometries and tested their behavior in 3 different models of immunosuppressed animals. Unfortunately, CPC cellularized silk fibroin scaffolds cannot be used in vivo. CPCs implanted alone or in collagen type I gel were destroyed by CD3+ lymphocyte aggregates, whereas the porous and partially oriented scaffolds elicited a consistent foreign body response characterized by giant cells. Only the electrospun meshes were resistant to the foreign body reaction. In conclusion, c-Kit-positive CPCs, although expressing a good level of cardiac differentiation markers in vitro with or without fibroin meshes, are not suitable for an in vivo model of cardiac organoids because they are degraded by a T-cell-mediated immune response. Even scaffolds which may preserve the survival of these cells in vivo also induced a host response. However, among the tested scaffolds, the electrospun meshes (F-scaffold) induced a lower response compared to all the other tested structures.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.