早期灰质结构协方差可预测儿童算术能力的纵向提高

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-06-06 DOI:10.1159/000531419
Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li
{"title":"早期灰质结构协方差可预测儿童算术能力的纵向提高","authors":"Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li","doi":"10.1159/000531419","DOIUrl":null,"url":null,"abstract":"<p><p>Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"119-135"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children.\",\"authors\":\"Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li\",\"doi\":\"10.1159/000531419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"119-135\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000531419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000531419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以往有关算术能力发展的神经影像学研究主要集中于大脑区域之间的功能激活或功能连接。大脑结构如何支持算术能力的发展在很大程度上仍是未知数。本研究探讨了早期灰质结构协方差是否有助于儿童日后算术能力的提高。我们使用了一个由 63 名发育典型儿童组成的公共纵向样本。参与者在 11 岁时接受了结构磁共振成像扫描,并分别在 11 岁(时间 1)和 13 岁(时间 2)时接受了乘法任务测试。我们从八个感兴趣的脑区提取了平均灰质体积,以锚定第一时间的显著性网络(SN)、额叶-顶叶网络(FPN)、运动网络(MN)和默认模式网络(DMN)。我们发现,算术能力的纵向提高与SN种子与额叶和顶叶区域较强的结构协方差以及FPN种子与岛叶较强的结构协方差有关,但FPN种子与运动和颞叶区域的结构协方差较弱,MN种子与额叶和运动区域的结构协方差较弱,DMN种子与颞叶区域的结构协方差较弱。然而,我们并未发现算术能力的纵向提高与行为测量或第一时间的区域灰质体积之间存在相关性。我们的研究为灰质结构协方差对儿童期算术能力纵向提高的特定贡献提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children.

Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信