区分单调同质性与单调多因素模型的测试。

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-06-01 Epub Date: 2023-03-18 DOI:10.1007/s11336-023-09905-w
Jules L Ellis, Klaas Sijtsma
{"title":"区分单调同质性与单调多因素模型的测试。","authors":"Jules L Ellis, Klaas Sijtsma","doi":"10.1007/s11336-023-09905-w","DOIUrl":null,"url":null,"abstract":"<p><p>The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis, Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359-1378, 1993), multivariate total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206-1218, 2000), and nonnegative partial correlations (Ellis in Psychometrika 79:303-316, 2014). We show that multidimensional monotone factor models with independent factors also imply these empirical conditions; therefore, the conditions are insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425-435, 1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal 55:34-44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test procedures that can reveal multidimensionality are Rosenbaum's (Psychometrika 49(3):425-435, 1984) Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items. The weights are estimated in a training sample from a linear regression analysis. Simulations show that the Type I error rate is under control and that, for large samples, the power is higher if one dimension is more important than the other or if there is a third dimension. In small samples and with two equally important dimensions, using the unweighted sum yields greater power.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188426/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models.\",\"authors\":\"Jules L Ellis, Klaas Sijtsma\",\"doi\":\"10.1007/s11336-023-09905-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis, Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359-1378, 1993), multivariate total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206-1218, 2000), and nonnegative partial correlations (Ellis in Psychometrika 79:303-316, 2014). We show that multidimensional monotone factor models with independent factors also imply these empirical conditions; therefore, the conditions are insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425-435, 1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal 55:34-44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test procedures that can reveal multidimensionality are Rosenbaum's (Psychometrika 49(3):425-435, 1984) Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items. The weights are estimated in a training sample from a linear regression analysis. Simulations show that the Type I error rate is under control and that, for large samples, the power is higher if one dimension is more important than the other or if there is a third dimension. In small samples and with two equally important dimensions, using the unweighted sum yields greater power.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10188426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09905-w\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09905-w","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

单维单调潜变量模型的拟合优度可以用以下经验条件来评估:非负相关性(Mokken,载于《量表分析的理论和程序》,Mouton,海牙,1971 年)、显单调性(Junker,载于《统计年鉴》21:1359-1378,1993 年)、阶 2 的多变量总正向性(Bartolucci 和 Forcina,载于《统计年鉴》28:1206-1218,2000 年)和非负偏相关性(Bartolucci 和 Forcina,载于《统计年鉴》28:1206-1218,2000 年):1359-1378,1993)、阶 2 的多变量总正向性(Bartolucci 和 Forcina 在 Ann Stat 28:1206-1218, 2000)以及非负偏相关(Ellis 在 Psychometrika 79:303-316, 2014)。我们证明,具有独立因子的多维单调因子模型也意味着这些经验条件;因此,这些条件对多维性并不敏感。条件关联(Rosenbaum,发表于《Psychometrika》49(3):425-435,1984 年)可以检测多维性,但对其进行测试(De Gooijer 和 Yuan,发表于《Comput Stat Data Anal》55:34-44,2011 年)通常对现实的项目数不可行。现有可行的能揭示多维性的测试程序只有罗森鲍姆(Psychometrika 49(3):425-435,1984 年)的案例 2 和案例 5,它们测试两个项目或两个子测试的协方差,条件是其他项目的非加权和。我们改进了这一程序,以其他项目的加权和为条件。权重是在训练样本中通过线性回归分析估算出来的。模拟结果表明,I 类错误率在可控范围内,而且在大样本中,如果一个维度比另一个维度更重要,或者存在第三个维度,则权重会更高。对于小样本和两个同样重要的维度,使用非加权和会产生更大的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models.

A Test to Distinguish Monotone Homogeneity from Monotone Multifactor Models.

The goodness-of-fit of the unidimensional monotone latent variable model can be assessed using the empirical conditions of nonnegative correlations (Mokken in A theory and procedure of scale-analysis, Mouton, The Hague, 1971), manifest monotonicity (Junker in Ann Stat 21:1359-1378, 1993), multivariate total positivity of order 2 (Bartolucci and Forcina in Ann Stat 28:1206-1218, 2000), and nonnegative partial correlations (Ellis in Psychometrika 79:303-316, 2014). We show that multidimensional monotone factor models with independent factors also imply these empirical conditions; therefore, the conditions are insensitive to multidimensionality. Conditional association (Rosenbaum in Psychometrika 49(3):425-435, 1984) can detect multidimensionality, but tests of it (De Gooijer and Yuan in Comput Stat Data Anal 55:34-44, 2011) are usually not feasible for realistic numbers of items. The only existing feasible test procedures that can reveal multidimensionality are Rosenbaum's (Psychometrika 49(3):425-435, 1984) Case 2 and Case 5, which test the covariance of two items or two subtests conditionally on the unweighted sum of the other items. We improve this procedure by conditioning on a weighted sum of the other items. The weights are estimated in a training sample from a linear regression analysis. Simulations show that the Type I error rate is under control and that, for large samples, the power is higher if one dimension is more important than the other or if there is a third dimension. In small samples and with two equally important dimensions, using the unweighted sum yields greater power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信