Diana Carneiro , Évila Pinheiro Damasceno , Violeta Ferreira , Ives Charlie-Silva , João Tedim , Frederico Maia , Susana Loureiro , Roberto Martins , Maria D. Pavlaki
{"title":"Zn-Al层状双氢氧化物诱导斑马鱼胚胎畸形并损害其运动行为","authors":"Diana Carneiro , Évila Pinheiro Damasceno , Violeta Ferreira , Ives Charlie-Silva , João Tedim , Frederico Maia , Susana Loureiro , Roberto Martins , Maria D. Pavlaki","doi":"10.1016/j.impact.2023.100457","DOIUrl":null,"url":null,"abstract":"<div><p>Layered double hydroxides (LDHs) are stimuli-responsive anionic nanoclays. The vast possibilities of using LDHs can lead to their existence in the ecosystem, raising a question of potential ecological concern. However, little is known about the effect of these nanomaterials on freshwater organisms. The present study aimed to assess the ecotoxicological effects of Zinc-Aluminium LDH-nitrate (Zn<img>Al LDH-NO<sub>3</sub>) in zebrafish (<em>Danio rerio</em>) early life stages. The endpoints measured were mortality, malformations and hatching rate after exposure of <em>D. rerio</em> embryos and larvae to Zn<img>Al LDH-NO<sub>3</sub> following the OECD 236 guideline. The behavioral, biochemical (markers of oxidative stress and neurotoxicity), and molecular (at DNA level) alterations were also assessed using sub-lethal concentrations. No observable acute effects were detected up to 415.2 mg LDH/L while the 96 h-LC<sub>50</sub> was estimated as 559.9 mg/L. Tested LDH caused malformations in <em>D. rerio</em> embryos, such as pericardial edema, incomplete yolk sac absorption and tail deformities (96 h-EC<sub>50</sub> = 172.4 mg/L). During the dark periods, the locomotor behavior in zebrafish larvae was affected upon Zn<img>Al LDH-NO<sub>3</sub> exposure. However, no significant biochemical and molecular changes were recorded. The present findings suggest that Zn<img>Al LDH-NO<sub>3</sub> can be regarded as a non-toxic nanomaterial towards <em>D. rerio</em> (E/LC<sub>50</sub> > > 100 mg/L) although impairment of the locomotion behavior on zebrafish embryos can be expected at concentrations below 100 mg/L.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"30 ","pages":"Article 100457"},"PeriodicalIF":4.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Zn-Al layered double hydroxides induce embryo malformations and impair locomotion behavior in Danio rerio\",\"authors\":\"Diana Carneiro , Évila Pinheiro Damasceno , Violeta Ferreira , Ives Charlie-Silva , João Tedim , Frederico Maia , Susana Loureiro , Roberto Martins , Maria D. Pavlaki\",\"doi\":\"10.1016/j.impact.2023.100457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layered double hydroxides (LDHs) are stimuli-responsive anionic nanoclays. The vast possibilities of using LDHs can lead to their existence in the ecosystem, raising a question of potential ecological concern. However, little is known about the effect of these nanomaterials on freshwater organisms. The present study aimed to assess the ecotoxicological effects of Zinc-Aluminium LDH-nitrate (Zn<img>Al LDH-NO<sub>3</sub>) in zebrafish (<em>Danio rerio</em>) early life stages. The endpoints measured were mortality, malformations and hatching rate after exposure of <em>D. rerio</em> embryos and larvae to Zn<img>Al LDH-NO<sub>3</sub> following the OECD 236 guideline. The behavioral, biochemical (markers of oxidative stress and neurotoxicity), and molecular (at DNA level) alterations were also assessed using sub-lethal concentrations. No observable acute effects were detected up to 415.2 mg LDH/L while the 96 h-LC<sub>50</sub> was estimated as 559.9 mg/L. Tested LDH caused malformations in <em>D. rerio</em> embryos, such as pericardial edema, incomplete yolk sac absorption and tail deformities (96 h-EC<sub>50</sub> = 172.4 mg/L). During the dark periods, the locomotor behavior in zebrafish larvae was affected upon Zn<img>Al LDH-NO<sub>3</sub> exposure. However, no significant biochemical and molecular changes were recorded. The present findings suggest that Zn<img>Al LDH-NO<sub>3</sub> can be regarded as a non-toxic nanomaterial towards <em>D. rerio</em> (E/LC<sub>50</sub> > > 100 mg/L) although impairment of the locomotion behavior on zebrafish embryos can be expected at concentrations below 100 mg/L.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"30 \",\"pages\":\"Article 100457\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074823000083\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074823000083","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Zn-Al layered double hydroxides induce embryo malformations and impair locomotion behavior in Danio rerio
Layered double hydroxides (LDHs) are stimuli-responsive anionic nanoclays. The vast possibilities of using LDHs can lead to their existence in the ecosystem, raising a question of potential ecological concern. However, little is known about the effect of these nanomaterials on freshwater organisms. The present study aimed to assess the ecotoxicological effects of Zinc-Aluminium LDH-nitrate (ZnAl LDH-NO3) in zebrafish (Danio rerio) early life stages. The endpoints measured were mortality, malformations and hatching rate after exposure of D. rerio embryos and larvae to ZnAl LDH-NO3 following the OECD 236 guideline. The behavioral, biochemical (markers of oxidative stress and neurotoxicity), and molecular (at DNA level) alterations were also assessed using sub-lethal concentrations. No observable acute effects were detected up to 415.2 mg LDH/L while the 96 h-LC50 was estimated as 559.9 mg/L. Tested LDH caused malformations in D. rerio embryos, such as pericardial edema, incomplete yolk sac absorption and tail deformities (96 h-EC50 = 172.4 mg/L). During the dark periods, the locomotor behavior in zebrafish larvae was affected upon ZnAl LDH-NO3 exposure. However, no significant biochemical and molecular changes were recorded. The present findings suggest that ZnAl LDH-NO3 can be regarded as a non-toxic nanomaterial towards D. rerio (E/LC50 > > 100 mg/L) although impairment of the locomotion behavior on zebrafish embryos can be expected at concentrations below 100 mg/L.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.