Eun Ju Choi, Sang-Jip Nam, Lauren Paul, Deanna Beatty, Christopher A Kauffman, Paul R Jensen, William Fenical
{"title":"以前未培养的海洋细菌与新型生物碱生产有关。","authors":"Eun Ju Choi, Sang-Jip Nam, Lauren Paul, Deanna Beatty, Christopher A Kauffman, Paul R Jensen, William Fenical","doi":"10.1016/j.chembiol.2015.07.014","DOIUrl":null,"url":null,"abstract":"<p><p>Low-nutrient media and long incubation times facilitated the cultivation of 20 taxonomically diverse Gram-negative marine bacteria within the phyla Bacteroidetes and Proteobacteria. These strains comprise as many as three new families and include members of clades that had only been observed using culture-independent techniques. Chemical studies of the type strains representing two new families within the order Cytophagales led to the isolation of nine new alkaloid secondary metabolites that can be grouped into four distinct structure classes, including azepinones, aziridines, quinolones, and pyrazinones. Several of these compounds possess antibacterial properties and appear, on structural grounds, to be produced by amino acid-based biosynthetic pathways. Our results demonstrate that relatively simple cultivation techniques can lead to the isolation of new bacterial taxa that are capable of the production of alkaloid secondary metabolites with antibacterial activities. These findings support continued investment in cultivation techniques as a method for natural product discovery. </p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":"22 9","pages":"1270-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.07.014","citationCount":"36","resultStr":"{\"title\":\"Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production.\",\"authors\":\"Eun Ju Choi, Sang-Jip Nam, Lauren Paul, Deanna Beatty, Christopher A Kauffman, Paul R Jensen, William Fenical\",\"doi\":\"10.1016/j.chembiol.2015.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-nutrient media and long incubation times facilitated the cultivation of 20 taxonomically diverse Gram-negative marine bacteria within the phyla Bacteroidetes and Proteobacteria. These strains comprise as many as three new families and include members of clades that had only been observed using culture-independent techniques. Chemical studies of the type strains representing two new families within the order Cytophagales led to the isolation of nine new alkaloid secondary metabolites that can be grouped into four distinct structure classes, including azepinones, aziridines, quinolones, and pyrazinones. Several of these compounds possess antibacterial properties and appear, on structural grounds, to be produced by amino acid-based biosynthetic pathways. Our results demonstrate that relatively simple cultivation techniques can lead to the isolation of new bacterial taxa that are capable of the production of alkaloid secondary metabolites with antibacterial activities. These findings support continued investment in cultivation techniques as a method for natural product discovery. </p>\",\"PeriodicalId\":9772,\"journal\":{\"name\":\"Chemistry & biology\",\"volume\":\"22 9\",\"pages\":\"1270-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.07.014\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chembiol.2015.07.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.07.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production.
Low-nutrient media and long incubation times facilitated the cultivation of 20 taxonomically diverse Gram-negative marine bacteria within the phyla Bacteroidetes and Proteobacteria. These strains comprise as many as three new families and include members of clades that had only been observed using culture-independent techniques. Chemical studies of the type strains representing two new families within the order Cytophagales led to the isolation of nine new alkaloid secondary metabolites that can be grouped into four distinct structure classes, including azepinones, aziridines, quinolones, and pyrazinones. Several of these compounds possess antibacterial properties and appear, on structural grounds, to be produced by amino acid-based biosynthetic pathways. Our results demonstrate that relatively simple cultivation techniques can lead to the isolation of new bacterial taxa that are capable of the production of alkaloid secondary metabolites with antibacterial activities. These findings support continued investment in cultivation techniques as a method for natural product discovery.