Jun Li, Yunfei Bai, Yang Liu, Zhongya Song, Yong Yang, Yang Zhao
{"title":"基于转录组的化学筛选将CDK8鉴定为多细胞重编程系统中的常见屏障。","authors":"Jun Li, Yunfei Bai, Yang Liu, Zhongya Song, Yong Yang, Yang Zhao","doi":"10.1016/j.celrep.2023.112566","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblasts can be chemically induced to pluripotent stem cells (CiPSCs) through an extraembryonic endoderm (XEN)-like state or directly converted into other differentiated cell lineages. However, the mechanisms underlying chemically induced cell-fate reprogramming remain unclear. Here, a transcriptome-based screen of biologically active compounds uncovered that CDK8 inhibition was essential to enable chemically induced reprogramming from fibroblasts into XEN-like cells, then CiPSCs. RNA-sequencing analysis showed that CDK8 inhibition downregulated proinflammatory pathways that suppress chemical reprogramming and facilitated the induction of a multi-lineage priming state, indicating the establishment of plasticity in fibroblasts. CDK8 inhibition also resulted in a chromatin accessibility profile like that under initial chemical reprogramming. Moreover, CDK8 inhibition greatly promoted reprogramming of mouse fibroblasts into hepatocyte-like cells and induction of human fibroblasts into adipocytes. These collective findings thus highlight CDK8 as a general molecular barrier in multiple cell reprogramming processes, and as a common target for inducing plasticity and cell fate conversion.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"42 6","pages":"112566"},"PeriodicalIF":7.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transcriptome-based chemical screens identify CDK8 as a common barrier in multiple cell reprogramming systems.\",\"authors\":\"Jun Li, Yunfei Bai, Yang Liu, Zhongya Song, Yong Yang, Yang Zhao\",\"doi\":\"10.1016/j.celrep.2023.112566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibroblasts can be chemically induced to pluripotent stem cells (CiPSCs) through an extraembryonic endoderm (XEN)-like state or directly converted into other differentiated cell lineages. However, the mechanisms underlying chemically induced cell-fate reprogramming remain unclear. Here, a transcriptome-based screen of biologically active compounds uncovered that CDK8 inhibition was essential to enable chemically induced reprogramming from fibroblasts into XEN-like cells, then CiPSCs. RNA-sequencing analysis showed that CDK8 inhibition downregulated proinflammatory pathways that suppress chemical reprogramming and facilitated the induction of a multi-lineage priming state, indicating the establishment of plasticity in fibroblasts. CDK8 inhibition also resulted in a chromatin accessibility profile like that under initial chemical reprogramming. Moreover, CDK8 inhibition greatly promoted reprogramming of mouse fibroblasts into hepatocyte-like cells and induction of human fibroblasts into adipocytes. These collective findings thus highlight CDK8 as a general molecular barrier in multiple cell reprogramming processes, and as a common target for inducing plasticity and cell fate conversion.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"42 6\",\"pages\":\"112566\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2023.112566\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2023.112566","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Transcriptome-based chemical screens identify CDK8 as a common barrier in multiple cell reprogramming systems.
Fibroblasts can be chemically induced to pluripotent stem cells (CiPSCs) through an extraembryonic endoderm (XEN)-like state or directly converted into other differentiated cell lineages. However, the mechanisms underlying chemically induced cell-fate reprogramming remain unclear. Here, a transcriptome-based screen of biologically active compounds uncovered that CDK8 inhibition was essential to enable chemically induced reprogramming from fibroblasts into XEN-like cells, then CiPSCs. RNA-sequencing analysis showed that CDK8 inhibition downregulated proinflammatory pathways that suppress chemical reprogramming and facilitated the induction of a multi-lineage priming state, indicating the establishment of plasticity in fibroblasts. CDK8 inhibition also resulted in a chromatin accessibility profile like that under initial chemical reprogramming. Moreover, CDK8 inhibition greatly promoted reprogramming of mouse fibroblasts into hepatocyte-like cells and induction of human fibroblasts into adipocytes. These collective findings thus highlight CDK8 as a general molecular barrier in multiple cell reprogramming processes, and as a common target for inducing plasticity and cell fate conversion.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.