{"title":"一种用于蒙面人脸的自动改进的面部表情识别。","authors":"Yasmeen ELsayed, Ashraf ELSayed, Mohamed A Abdou","doi":"10.1007/s00521-023-08498-w","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic facial expression recognition (AFER), sometimes referred to as emotional recognition, is important for socializing. Automatic methods in the past two years faced challenges due to Covid-19 and the vital wearing of a mask. Machine learning techniques tremendously increase the amount of data processed and achieved good results in such AFER to detect emotions; however, those techniques are not designed for masked faces and thus achieved poor recognition. This paper introduces a hybrid convolutional neural network aided by a local binary pattern to extract features in an accurate way, especially for masked faces. The basic seven emotions classified into anger, happiness, sadness, surprise, contempt, disgust, and fear are to be recognized. The proposed method is applied on two datasets: the first represents CK and CK +, while the second represents M-LFW-FER. Obtained results show that emotion recognition with a face mask achieved an accuracy of 70.76% on three emotions. Results are compared to existing techniques and show significant improvement.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 20","pages":"14963-14972"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067009/pdf/","citationCount":"3","resultStr":"{\"title\":\"An automatic improved facial expression recognition for masked faces.\",\"authors\":\"Yasmeen ELsayed, Ashraf ELSayed, Mohamed A Abdou\",\"doi\":\"10.1007/s00521-023-08498-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic facial expression recognition (AFER), sometimes referred to as emotional recognition, is important for socializing. Automatic methods in the past two years faced challenges due to Covid-19 and the vital wearing of a mask. Machine learning techniques tremendously increase the amount of data processed and achieved good results in such AFER to detect emotions; however, those techniques are not designed for masked faces and thus achieved poor recognition. This paper introduces a hybrid convolutional neural network aided by a local binary pattern to extract features in an accurate way, especially for masked faces. The basic seven emotions classified into anger, happiness, sadness, surprise, contempt, disgust, and fear are to be recognized. The proposed method is applied on two datasets: the first represents CK and CK +, while the second represents M-LFW-FER. Obtained results show that emotion recognition with a face mask achieved an accuracy of 70.76% on three emotions. Results are compared to existing techniques and show significant improvement.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 20\",\"pages\":\"14963-14972\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067009/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08498-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08498-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An automatic improved facial expression recognition for masked faces.
Automatic facial expression recognition (AFER), sometimes referred to as emotional recognition, is important for socializing. Automatic methods in the past two years faced challenges due to Covid-19 and the vital wearing of a mask. Machine learning techniques tremendously increase the amount of data processed and achieved good results in such AFER to detect emotions; however, those techniques are not designed for masked faces and thus achieved poor recognition. This paper introduces a hybrid convolutional neural network aided by a local binary pattern to extract features in an accurate way, especially for masked faces. The basic seven emotions classified into anger, happiness, sadness, surprise, contempt, disgust, and fear are to be recognized. The proposed method is applied on two datasets: the first represents CK and CK +, while the second represents M-LFW-FER. Obtained results show that emotion recognition with a face mask achieved an accuracy of 70.76% on three emotions. Results are compared to existing techniques and show significant improvement.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.