SETD5单倍体不足影响神经细胞的线粒体室。

IF 6.3 1区 医学 Q1 GENETICS & HEREDITY
Mattia Zaghi, Fabiana Longo, Luca Massimino, Alicia Rubio, Simone Bido, Pietro Giuseppe Mazzara, Edoardo Bellini, Federica Banfi, Paola Podini, Francesca Maltecca, Alessio Zippo, Vania Broccoli, Alessandro Sessa
{"title":"SETD5单倍体不足影响神经细胞的线粒体室。","authors":"Mattia Zaghi,&nbsp;Fabiana Longo,&nbsp;Luca Massimino,&nbsp;Alicia Rubio,&nbsp;Simone Bido,&nbsp;Pietro Giuseppe Mazzara,&nbsp;Edoardo Bellini,&nbsp;Federica Banfi,&nbsp;Paola Podini,&nbsp;Francesca Maltecca,&nbsp;Alessio Zippo,&nbsp;Vania Broccoli,&nbsp;Alessandro Sessa","doi":"10.1186/s13229-023-00550-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population.</p><p><strong>Methods: </strong>We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality.</p><p><strong>Results: </strong>Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses.</p><p><strong>Limitations: </strong>We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease.</p><p><strong>Conclusions: </strong>Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"14 1","pages":"20"},"PeriodicalIF":6.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233863/pdf/","citationCount":"1","resultStr":"{\"title\":\"SETD5 haploinsufficiency affects mitochondrial compartment in neural cells.\",\"authors\":\"Mattia Zaghi,&nbsp;Fabiana Longo,&nbsp;Luca Massimino,&nbsp;Alicia Rubio,&nbsp;Simone Bido,&nbsp;Pietro Giuseppe Mazzara,&nbsp;Edoardo Bellini,&nbsp;Federica Banfi,&nbsp;Paola Podini,&nbsp;Francesca Maltecca,&nbsp;Alessio Zippo,&nbsp;Vania Broccoli,&nbsp;Alessandro Sessa\",\"doi\":\"10.1186/s13229-023-00550-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population.</p><p><strong>Methods: </strong>We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality.</p><p><strong>Results: </strong>Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses.</p><p><strong>Limitations: </strong>We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease.</p><p><strong>Conclusions: </strong>Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.</p>\",\"PeriodicalId\":18733,\"journal\":{\"name\":\"Molecular Autism\",\"volume\":\"14 1\",\"pages\":\"20\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233863/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Autism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13229-023-00550-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-023-00550-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

背景:神经发育障碍(ndd)是由多种分子机制改变和细胞功能障碍引起的异质性疾病。由于染色质缺陷,SETD5单倍不足导致ndd。NDD的表观遗传基础在越来越多的病例中被报道,而线粒体功能障碍在NDD患者中比在一般人群中更常见。方法:我们研究了体外神经干细胞和Setd5单倍功能不全小鼠模型的大脑,询问其转录组,分析线粒体结构、生化组成、动力学以及线粒体功能。结果:由SETD5酶减少引起的转录畸变促进了线粒体损伤。低水平的SETD5导致线粒体碎片化,线粒体膜电位降低,以及神经前体和神经元中ATP的产生。线粒体也在突变的神经元中定位错误,神经突和突触内的细胞器减少。局限性:我们在线粒体室中发现了几个缺陷;然而,我们只能推测它们在疾病基础上的病理机制层次中的位置。结论:我们的研究探讨了染色质调控和线粒体功能之间的相互作用,这可能是setd5相关NDD病理生理的一个重要方面。我们的数据,如果在患者环境中得到证实,表明线粒体活性和动力学可能代表与SETD5缺失相关的疾病的新治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SETD5 haploinsufficiency affects mitochondrial compartment in neural cells.

SETD5 haploinsufficiency affects mitochondrial compartment in neural cells.

SETD5 haploinsufficiency affects mitochondrial compartment in neural cells.

SETD5 haploinsufficiency affects mitochondrial compartment in neural cells.

Background: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population.

Methods: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality.

Results: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses.

Limitations: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease.

Conclusions: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Autism
Molecular Autism GENETICS & HEREDITY-NEUROSCIENCES
CiteScore
12.10
自引率
1.60%
发文量
44
审稿时长
17 weeks
期刊介绍: Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信