{"title":"物联网实现了使用深度学习的实时健康监测系统。","authors":"Xingdong Wu, Chao Liu, Lijun Wang, Muhammad Bilal","doi":"10.1007/s00521-021-06440-6","DOIUrl":null,"url":null,"abstract":"<p><p>Smart healthcare monitoring systems are proliferating due to the Internet of Things (IoT)-enabled portable medical devices. The IoT and deep learning in the healthcare sector prevent diseases by evolving healthcare from face-to-face consultation to telemedicine. To protect athletes' life from life-threatening severe conditions and injuries in training and competitions, real-time monitoring of physiological indicators is critical. In this research work, we present a deep learning-based IoT-enabled real-time health monitoring system. The proposed system uses wearable medical devices to measure vital signs and apply various deep learning algorithms to extract valuable information. For this purpose, we have taken Sanda athletes as our case study. The deep learning algorithms help physicians properly analyze these athletes' conditions and offer the proper medications to them, even if the doctors are away. The performance of the proposed system is extensively evaluated using a cross-validation test by considering various statistical-based performance measurement metrics. The proposed system is considered an effective tool that diagnoses dreadful diseases among the athletes, such as brain tumors, heart disease, cancer, etc. The performance results of the proposed system are evaluated in terms of precision, recall, AUC, and F1, respectively.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 20","pages":"14565-14576"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442525/pdf/","citationCount":"20","resultStr":"{\"title\":\"Internet of things-enabled real-time health monitoring system using deep learning.\",\"authors\":\"Xingdong Wu, Chao Liu, Lijun Wang, Muhammad Bilal\",\"doi\":\"10.1007/s00521-021-06440-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Smart healthcare monitoring systems are proliferating due to the Internet of Things (IoT)-enabled portable medical devices. The IoT and deep learning in the healthcare sector prevent diseases by evolving healthcare from face-to-face consultation to telemedicine. To protect athletes' life from life-threatening severe conditions and injuries in training and competitions, real-time monitoring of physiological indicators is critical. In this research work, we present a deep learning-based IoT-enabled real-time health monitoring system. The proposed system uses wearable medical devices to measure vital signs and apply various deep learning algorithms to extract valuable information. For this purpose, we have taken Sanda athletes as our case study. The deep learning algorithms help physicians properly analyze these athletes' conditions and offer the proper medications to them, even if the doctors are away. The performance of the proposed system is extensively evaluated using a cross-validation test by considering various statistical-based performance measurement metrics. The proposed system is considered an effective tool that diagnoses dreadful diseases among the athletes, such as brain tumors, heart disease, cancer, etc. The performance results of the proposed system are evaluated in terms of precision, recall, AUC, and F1, respectively.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 20\",\"pages\":\"14565-14576\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442525/pdf/\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-021-06440-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06440-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Internet of things-enabled real-time health monitoring system using deep learning.
Smart healthcare monitoring systems are proliferating due to the Internet of Things (IoT)-enabled portable medical devices. The IoT and deep learning in the healthcare sector prevent diseases by evolving healthcare from face-to-face consultation to telemedicine. To protect athletes' life from life-threatening severe conditions and injuries in training and competitions, real-time monitoring of physiological indicators is critical. In this research work, we present a deep learning-based IoT-enabled real-time health monitoring system. The proposed system uses wearable medical devices to measure vital signs and apply various deep learning algorithms to extract valuable information. For this purpose, we have taken Sanda athletes as our case study. The deep learning algorithms help physicians properly analyze these athletes' conditions and offer the proper medications to them, even if the doctors are away. The performance of the proposed system is extensively evaluated using a cross-validation test by considering various statistical-based performance measurement metrics. The proposed system is considered an effective tool that diagnoses dreadful diseases among the athletes, such as brain tumors, heart disease, cancer, etc. The performance results of the proposed system are evaluated in terms of precision, recall, AUC, and F1, respectively.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.