使用机器学习算法预测败血症中危及生命的室性心律失常。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-04-06 eCollection Date: 2023-05-01 DOI:10.1093/ehjdh/ztad025
Le Li, Zhuxin Zhang, Likun Zhou, Zhenhao Zhang, Yulong Xiong, Zhao Hu, Yan Yao
{"title":"使用机器学习算法预测败血症中危及生命的室性心律失常。","authors":"Le Li, Zhuxin Zhang, Likun Zhou, Zhenhao Zhang, Yulong Xiong, Zhao Hu, Yan Yao","doi":"10.1093/ehjdh/ztad025","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Life-threatening ventricular arrhythmias (LTVAs) are common manifestations of sepsis. The majority of sepsis patients with LTVA are unresponsive to initial standard treatment and thus have a poor prognosis. There are very limited studies focusing on the early identification of patients at high risk of LTVA in sepsis to perform optimal preventive treatment interventions. We aimed to develop a prediction model to predict LTVA in sepsis using machine learning (ML) approaches.</p><p><strong>Methods and results: </strong>Six ML algorithms including CatBoost, LightGBM, and XGBoost were employed to perform the model fitting. The least absolute shrinkage and selection operator (LASSO) regression was used to identify key features. Methods of model evaluation involved in this study included area under the receiver operating characteristic curve (AUROC), for model discrimination, calibration curve, and Brier score, for model calibration. Finally, we validated the prediction model both internally and externally. A total of 27 139 patients with sepsis were identified in this study, 1136 (4.2%) suffered from LTVA during hospitalization. We screened out 10 key features from the initial 54 variables via LASSO regression to improve the practicability of the model. CatBoost showed the best prediction performance among the six ML algorithms, with excellent discrimination (AUROC = 0.874) and calibration (Brier score = 0.157). The remarkable performance of the model was presented in the external validation cohort (<i>n</i> = 9492), with an AUROC of 0.836, suggesting certain generalizability of the model. Finally, a nomogram with risk classification of LTVA was shown in this study.</p><p><strong>Conclusion: </strong>We established and validated a machine leaning-based prediction model, which was conducive to early identification of high-risk LTVA patients in sepsis, thus appropriate methods could be conducted to improve outcomes.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/c8/ztad025.PMC10232270.pdf","citationCount":"0","resultStr":"{\"title\":\"Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis.\",\"authors\":\"Le Li, Zhuxin Zhang, Likun Zhou, Zhenhao Zhang, Yulong Xiong, Zhao Hu, Yan Yao\",\"doi\":\"10.1093/ehjdh/ztad025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Life-threatening ventricular arrhythmias (LTVAs) are common manifestations of sepsis. The majority of sepsis patients with LTVA are unresponsive to initial standard treatment and thus have a poor prognosis. There are very limited studies focusing on the early identification of patients at high risk of LTVA in sepsis to perform optimal preventive treatment interventions. We aimed to develop a prediction model to predict LTVA in sepsis using machine learning (ML) approaches.</p><p><strong>Methods and results: </strong>Six ML algorithms including CatBoost, LightGBM, and XGBoost were employed to perform the model fitting. The least absolute shrinkage and selection operator (LASSO) regression was used to identify key features. Methods of model evaluation involved in this study included area under the receiver operating characteristic curve (AUROC), for model discrimination, calibration curve, and Brier score, for model calibration. Finally, we validated the prediction model both internally and externally. A total of 27 139 patients with sepsis were identified in this study, 1136 (4.2%) suffered from LTVA during hospitalization. We screened out 10 key features from the initial 54 variables via LASSO regression to improve the practicability of the model. CatBoost showed the best prediction performance among the six ML algorithms, with excellent discrimination (AUROC = 0.874) and calibration (Brier score = 0.157). The remarkable performance of the model was presented in the external validation cohort (<i>n</i> = 9492), with an AUROC of 0.836, suggesting certain generalizability of the model. Finally, a nomogram with risk classification of LTVA was shown in this study.</p><p><strong>Conclusion: </strong>We established and validated a machine leaning-based prediction model, which was conducive to early identification of high-risk LTVA patients in sepsis, thus appropriate methods could be conducted to improve outcomes.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/c8/ztad025.PMC10232270.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:危及生命的室性心律失常(LTVA)是败血症的常见表现。大多数患有LTVA的败血症患者对最初的标准治疗没有反应,因此预后较差。很少有研究关注败血症中LTVA高危患者的早期识别,以进行最佳的预防性治疗干预。我们旨在使用机器学习(ML)方法开发一个预测模型来预测败血症中的LTVA。方法和结果:采用CatBoost、LightGBM和XGBoost等六种ML算法进行模型拟合。使用最小绝对收缩和选择算子(LASSO)回归来识别关键特征。本研究涉及的模型评估方法包括受试者工作特性曲线下面积(AUROC),用于模型判别、校准曲线和Brier评分,用于模型校准。最后,我们对预测模型进行了内部和外部验证。本研究共确定了27139名败血症患者,其中1136人(4.2%)在住院期间患有LTVA。我们通过LASSO回归从最初的54个变量中筛选出10个关键特征,以提高模型的实用性。CatBoost在六种ML算法中表现出最好的预测性能,具有良好的判别能力(AUROC=0.874)和校准能力(Brier分数=0.157)。该模型的显著性能在外部验证队列(n=9492)中表现出来,AUROC为0.836,表明该模型具有一定的可推广性。最后,本研究显示了LTVA风险分类的列线图。结论:我们建立并验证了一个基于机器学习的预测模型,该模型有助于早期识别败血症中的高危LTVA患者,因此可以采取适当的方法来改善预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis.

Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis.

Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis.

Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis.

Aims: Life-threatening ventricular arrhythmias (LTVAs) are common manifestations of sepsis. The majority of sepsis patients with LTVA are unresponsive to initial standard treatment and thus have a poor prognosis. There are very limited studies focusing on the early identification of patients at high risk of LTVA in sepsis to perform optimal preventive treatment interventions. We aimed to develop a prediction model to predict LTVA in sepsis using machine learning (ML) approaches.

Methods and results: Six ML algorithms including CatBoost, LightGBM, and XGBoost were employed to perform the model fitting. The least absolute shrinkage and selection operator (LASSO) regression was used to identify key features. Methods of model evaluation involved in this study included area under the receiver operating characteristic curve (AUROC), for model discrimination, calibration curve, and Brier score, for model calibration. Finally, we validated the prediction model both internally and externally. A total of 27 139 patients with sepsis were identified in this study, 1136 (4.2%) suffered from LTVA during hospitalization. We screened out 10 key features from the initial 54 variables via LASSO regression to improve the practicability of the model. CatBoost showed the best prediction performance among the six ML algorithms, with excellent discrimination (AUROC = 0.874) and calibration (Brier score = 0.157). The remarkable performance of the model was presented in the external validation cohort (n = 9492), with an AUROC of 0.836, suggesting certain generalizability of the model. Finally, a nomogram with risk classification of LTVA was shown in this study.

Conclusion: We established and validated a machine leaning-based prediction model, which was conducive to early identification of high-risk LTVA patients in sepsis, thus appropriate methods could be conducted to improve outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信