利用自我监督深度学习从常规病理切片中预测心脏移植排斥反应。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-03-02 eCollection Date: 2023-05-01 DOI:10.1093/ehjdh/ztad016
Tobias Paul Seraphin, Mark Luedde, Christoph Roderburg, Marko van Treeck, Pascal Scheider, Roman D Buelow, Peter Boor, Sven H Loosen, Zdenek Provaznik, Daniel Mendelsohn, Filip Berisha, Christina Magnussen, Dirk Westermann, Tom Luedde, Christoph Brochhausen, Samuel Sossalla, Jakob Nikolas Kather
{"title":"利用自我监督深度学习从常规病理切片中预测心脏移植排斥反应。","authors":"Tobias Paul Seraphin, Mark Luedde, Christoph Roderburg, Marko van Treeck, Pascal Scheider, Roman D Buelow, Peter Boor, Sven H Loosen, Zdenek Provaznik, Daniel Mendelsohn, Filip Berisha, Christina Magnussen, Dirk Westermann, Tom Luedde, Christoph Brochhausen, Samuel Sossalla, Jakob Nikolas Kather","doi":"10.1093/ehjdh/ztad016","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>One of the most important complications of heart transplantation is organ rejection, which is diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using deep learning in predicting the degree of cellular rejection from pathology slides as defined by the International Society for Heart and Lung Transplantation (ISHLT) grading system.</p><p><strong>Methods and results: </strong>We collected 1079 histopathology slides from 325 patients from three transplant centres in Germany. We trained an attention-based deep neural network to predict rejection in the primary cohort and evaluated its performance using cross-validation and by deploying it to three cohorts. For binary prediction (rejection yes/no), the mean area under the receiver operating curve (AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729, and 0.716 in external validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633, and 0.905 in the cross-validated experiment and 0.764, 0.597, and 0.913; 0.631, 0.633, and 0.682; and 0.722, 0.601, and 0.805 in the validation cohorts, respectively. The predictions of the artificial intelligence model were interpretable by human experts and highlighted plausible morphological patterns.</p><p><strong>Conclusion: </strong>We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine pathology, even when trained on small cohorts.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/45/ztad016.PMC10232288.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning.\",\"authors\":\"Tobias Paul Seraphin, Mark Luedde, Christoph Roderburg, Marko van Treeck, Pascal Scheider, Roman D Buelow, Peter Boor, Sven H Loosen, Zdenek Provaznik, Daniel Mendelsohn, Filip Berisha, Christina Magnussen, Dirk Westermann, Tom Luedde, Christoph Brochhausen, Samuel Sossalla, Jakob Nikolas Kather\",\"doi\":\"10.1093/ehjdh/ztad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>One of the most important complications of heart transplantation is organ rejection, which is diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using deep learning in predicting the degree of cellular rejection from pathology slides as defined by the International Society for Heart and Lung Transplantation (ISHLT) grading system.</p><p><strong>Methods and results: </strong>We collected 1079 histopathology slides from 325 patients from three transplant centres in Germany. We trained an attention-based deep neural network to predict rejection in the primary cohort and evaluated its performance using cross-validation and by deploying it to three cohorts. For binary prediction (rejection yes/no), the mean area under the receiver operating curve (AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729, and 0.716 in external validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633, and 0.905 in the cross-validated experiment and 0.764, 0.597, and 0.913; 0.631, 0.633, and 0.682; and 0.722, 0.601, and 0.805 in the validation cohorts, respectively. The predictions of the artificial intelligence model were interpretable by human experts and highlighted plausible morphological patterns.</p><p><strong>Conclusion: </strong>We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine pathology, even when trained on small cohorts.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/45/ztad016.PMC10232288.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:心脏移植最重要的并发症之一是器官排斥反应,病理学家通过心内膜活检对排斥反应进行诊断。基于计算机的系统可以协助诊断过程,并有可能提高可重复性。在此,我们评估了使用深度学习从病理切片中预测细胞排斥反应程度的可行性,病理切片由国际心肺移植学会(ISHLT)分级系统定义:我们收集了来自德国三个移植中心 325 名患者的 1079 张组织病理切片。我们训练了一个基于注意力的深度神经网络来预测主要队列中的排斥反应,并通过交叉验证和部署到三个队列中来评估其性能。对于二元预测(排斥反应是/否),交叉验证实验的接收者操作曲线下平均面积(AUROC)为 0.849,外部验证队列的接收者操作曲线下平均面积(AUROC)分别为 0.734、0.729 和 0.716。对于 ISHLT 分级(0R、1R、2/3R)的预测,交叉验证实验的 AUROC 分别为 0.835、0.633 和 0.905,验证队列的 AUROC 分别为 0.764、0.597 和 0.913;0.631、0.633 和 0.682;以及 0.722、0.601 和 0.805。人工智能模型的预测结果可供人类专家解读,并突出了可信的形态模式:我们得出结论:人工智能可以检测常规病理学中的细胞移植排斥模式,即使是在小规模队列中进行训练也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning.

Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning.

Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning.

Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning.

Aims: One of the most important complications of heart transplantation is organ rejection, which is diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using deep learning in predicting the degree of cellular rejection from pathology slides as defined by the International Society for Heart and Lung Transplantation (ISHLT) grading system.

Methods and results: We collected 1079 histopathology slides from 325 patients from three transplant centres in Germany. We trained an attention-based deep neural network to predict rejection in the primary cohort and evaluated its performance using cross-validation and by deploying it to three cohorts. For binary prediction (rejection yes/no), the mean area under the receiver operating curve (AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729, and 0.716 in external validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633, and 0.905 in the cross-validated experiment and 0.764, 0.597, and 0.913; 0.631, 0.633, and 0.682; and 0.722, 0.601, and 0.805 in the validation cohorts, respectively. The predictions of the artificial intelligence model were interpretable by human experts and highlighted plausible morphological patterns.

Conclusion: We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine pathology, even when trained on small cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信