{"title":"富含菜叶粉末的木薯淀粉-壳聚糖可食用保鲜膜在环保食品包装应用中的表征和定性评估","authors":"Mohandas Prithiviraj, Abhilash Sasidharan, Bindu Murali Krishna, Sarsan Sabu, Kappat Valiyapeediyekkal Sunooj, Kiliyanamkandy Anoop, Johnsy George","doi":"10.1177/10820132231179492","DOIUrl":null,"url":null,"abstract":"<p><p>Cassava starch-based edible food wraps were prepared by incorporating leaf powder from Indian curry leaf and Malabar bay leaf, reinforced with different (0.2, 0.4, 0.6, 0.8) wt.% of chitosan. Eleven combinations of films were prepared and their sensory acceptability, physical properties, Fourier-transform infrared spectroscopic (FTIR) spectrum, and scanning electron microscopy (SEM) image, were evaluated. The thickness of the films ranged from 0.198 ± 0.12 to 0.372 ± 0.27 mm. Tensile strength was reported to be the highest (40.71 ± 1.21 MPa) in the curry leaf powder incorporated sample. Maximum elongation at break was reported by bay leaf powder incorporated (5.8 ± 1.59%) sample. The Young's modulus values were observed to be increasing along with the concentration of chitosan. Maximum seal strength values were reported by curry leaf powder incorporated film with 0.8% chitosan (2.93 ± 0.22 N/mm). The leaf powder incorporated samples reported a higher flavonoid content compared to the control. The color analysis (L*, a*, b*) of the films was identical to the natural leaf color. The SEM images indicated a rough texture for the leaf powder incorporated films. The FTIR evaluation confirmed the presence of the respective functional groups. The statistical evaluation done by statistical package for social sciences software showed that all the data were significantly different (<i>P</i> ≤ 0.05.). The study demonstrated the potential of incorporation of leaf powder and chitosan to enhance the properties of starch-based edible packaging.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and qualitative evaluation of cassava starch-chitosan edible food wrap enriched with culinary leaf powders for eco-friendly food packaging applications.\",\"authors\":\"Mohandas Prithiviraj, Abhilash Sasidharan, Bindu Murali Krishna, Sarsan Sabu, Kappat Valiyapeediyekkal Sunooj, Kiliyanamkandy Anoop, Johnsy George\",\"doi\":\"10.1177/10820132231179492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cassava starch-based edible food wraps were prepared by incorporating leaf powder from Indian curry leaf and Malabar bay leaf, reinforced with different (0.2, 0.4, 0.6, 0.8) wt.% of chitosan. Eleven combinations of films were prepared and their sensory acceptability, physical properties, Fourier-transform infrared spectroscopic (FTIR) spectrum, and scanning electron microscopy (SEM) image, were evaluated. The thickness of the films ranged from 0.198 ± 0.12 to 0.372 ± 0.27 mm. Tensile strength was reported to be the highest (40.71 ± 1.21 MPa) in the curry leaf powder incorporated sample. Maximum elongation at break was reported by bay leaf powder incorporated (5.8 ± 1.59%) sample. The Young's modulus values were observed to be increasing along with the concentration of chitosan. Maximum seal strength values were reported by curry leaf powder incorporated film with 0.8% chitosan (2.93 ± 0.22 N/mm). The leaf powder incorporated samples reported a higher flavonoid content compared to the control. The color analysis (L*, a*, b*) of the films was identical to the natural leaf color. The SEM images indicated a rough texture for the leaf powder incorporated films. The FTIR evaluation confirmed the presence of the respective functional groups. The statistical evaluation done by statistical package for social sciences software showed that all the data were significantly different (<i>P</i> ≤ 0.05.). The study demonstrated the potential of incorporation of leaf powder and chitosan to enhance the properties of starch-based edible packaging.</p>\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132231179492\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231179492","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Characterization and qualitative evaluation of cassava starch-chitosan edible food wrap enriched with culinary leaf powders for eco-friendly food packaging applications.
Cassava starch-based edible food wraps were prepared by incorporating leaf powder from Indian curry leaf and Malabar bay leaf, reinforced with different (0.2, 0.4, 0.6, 0.8) wt.% of chitosan. Eleven combinations of films were prepared and their sensory acceptability, physical properties, Fourier-transform infrared spectroscopic (FTIR) spectrum, and scanning electron microscopy (SEM) image, were evaluated. The thickness of the films ranged from 0.198 ± 0.12 to 0.372 ± 0.27 mm. Tensile strength was reported to be the highest (40.71 ± 1.21 MPa) in the curry leaf powder incorporated sample. Maximum elongation at break was reported by bay leaf powder incorporated (5.8 ± 1.59%) sample. The Young's modulus values were observed to be increasing along with the concentration of chitosan. Maximum seal strength values were reported by curry leaf powder incorporated film with 0.8% chitosan (2.93 ± 0.22 N/mm). The leaf powder incorporated samples reported a higher flavonoid content compared to the control. The color analysis (L*, a*, b*) of the films was identical to the natural leaf color. The SEM images indicated a rough texture for the leaf powder incorporated films. The FTIR evaluation confirmed the presence of the respective functional groups. The statistical evaluation done by statistical package for social sciences software showed that all the data were significantly different (P ≤ 0.05.). The study demonstrated the potential of incorporation of leaf powder and chitosan to enhance the properties of starch-based edible packaging.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).