酪氨酸重组的机制建模揭示了决定CAR - T细胞开关电路性能的关键参数

Jack E. Bowyer, Deboki Chakravarti, Wilson W. Wong, Declan G. Bates
{"title":"酪氨酸重组的机制建模揭示了决定CAR - T细胞开关电路性能的关键参数","authors":"Jack E. Bowyer,&nbsp;Deboki Chakravarti,&nbsp;Wilson W. Wong,&nbsp;Declan G. Bates","doi":"10.1049/enb.2019.0020","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion–excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.</p>\n </div>","PeriodicalId":72921,"journal":{"name":"Engineering biology","volume":"4 1","pages":"10-19"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996713/pdf/","citationCount":"1","resultStr":"{\"title\":\"Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit\",\"authors\":\"Jack E. Bowyer,&nbsp;Deboki Chakravarti,&nbsp;Wilson W. Wong,&nbsp;Declan G. Bates\",\"doi\":\"10.1049/enb.2019.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion–excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.</p>\\n </div>\",\"PeriodicalId\":72921,\"journal\":{\"name\":\"Engineering biology\",\"volume\":\"4 1\",\"pages\":\"10-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996713/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enb.2019.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enb.2019.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于酪氨酸重组酶DNA切除的诱导基因开关是肿瘤免疫治疗中嵌合抗原受体(CAR) T细胞活性调控的一个有前景的平台。这些开关通过反转-切除电路设计提高了酪氨酸重组酶DNA切除的稳定性。在这里,作者开发了酪氨酸重组酶开关动力学的第一个机械数学模型,并通过全局优化和统计近似方法对实验数据进行了验证。该模型的分析提供了关于哪些系统参数最适合实验调谐的指导方针,以便在体内建立最佳开关性能。特别是,他们发现通过增加诱导剂药物4-OHT的浓度和/或通过使用启动子产生更高水平的FlpO重组酶表达,可以显著加快开关反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit

Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit

Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion–excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信