{"title":"果糖水平对食品发酵过程中酵母体内碳流和代谢物的调控。","authors":"Dongdong Xie, Yanan Lei, Yingqi Sun, Xing Li, Jiaxin Zheng","doi":"10.1177/10820132231179495","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the effects of fructose levels on yeast growth, metabolic pathways and products, and redox status were investigated by simulated dough medium. The results showed that yeast was subjected to oxidative stress and damage under both sugar-free and high-fructose conditions. Yeast has a strong ability to metabolize pentose phosphate, trehalose, and tricarboxylic acid under sugar-free conditions. In the high fructose environment, yeast preferentially produced trehalose and glycerol in the early stage and gradually increased the metabolism of pentose phosphate in the later stage. Compared with the low fructose concentration, yeast had stronger pentose phosphate and tricarboxylic acid cycle (TCA) metabolism to ensure nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) content in higher fructose levels. Therefore, sugar-free and high fructose levels affected the growth of yeast cells and yeast responded to fructose levels by regulating the metabolic carbon flow of glycolysis, pentose phosphate, trehalose, and TCA.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"69-82"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of fructose levels on carbon flow and metabolites in yeast during food fermentation.\",\"authors\":\"Dongdong Xie, Yanan Lei, Yingqi Sun, Xing Li, Jiaxin Zheng\",\"doi\":\"10.1177/10820132231179495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the effects of fructose levels on yeast growth, metabolic pathways and products, and redox status were investigated by simulated dough medium. The results showed that yeast was subjected to oxidative stress and damage under both sugar-free and high-fructose conditions. Yeast has a strong ability to metabolize pentose phosphate, trehalose, and tricarboxylic acid under sugar-free conditions. In the high fructose environment, yeast preferentially produced trehalose and glycerol in the early stage and gradually increased the metabolism of pentose phosphate in the later stage. Compared with the low fructose concentration, yeast had stronger pentose phosphate and tricarboxylic acid cycle (TCA) metabolism to ensure nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) content in higher fructose levels. Therefore, sugar-free and high fructose levels affected the growth of yeast cells and yeast responded to fructose levels by regulating the metabolic carbon flow of glycolysis, pentose phosphate, trehalose, and TCA.</p>\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":\" \",\"pages\":\"69-82\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132231179495\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231179495","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Regulation of fructose levels on carbon flow and metabolites in yeast during food fermentation.
In this study, the effects of fructose levels on yeast growth, metabolic pathways and products, and redox status were investigated by simulated dough medium. The results showed that yeast was subjected to oxidative stress and damage under both sugar-free and high-fructose conditions. Yeast has a strong ability to metabolize pentose phosphate, trehalose, and tricarboxylic acid under sugar-free conditions. In the high fructose environment, yeast preferentially produced trehalose and glycerol in the early stage and gradually increased the metabolism of pentose phosphate in the later stage. Compared with the low fructose concentration, yeast had stronger pentose phosphate and tricarboxylic acid cycle (TCA) metabolism to ensure nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) content in higher fructose levels. Therefore, sugar-free and high fructose levels affected the growth of yeast cells and yeast responded to fructose levels by regulating the metabolic carbon flow of glycolysis, pentose phosphate, trehalose, and TCA.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).