抗菌肽:抗结核治疗的一个有前途的策略。

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Ning, Lujuan Wang, Menglu Wang, Xiangying Meng, Jinjuan Qiao
{"title":"抗菌肽:抗结核治疗的一个有前途的策略。","authors":"Yu Ning,&nbsp;Lujuan Wang,&nbsp;Menglu Wang,&nbsp;Xiangying Meng,&nbsp;Jinjuan Qiao","doi":"10.2174/0929866530666230315113624","DOIUrl":null,"url":null,"abstract":"<p><p>The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (<i>Mtb</i>) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-<i>Mtb</i> in the future.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":"30 4","pages":"280-294"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Peptides: A Promising Strategy for Anti-tuberculosis Therapeutics.\",\"authors\":\"Yu Ning,&nbsp;Lujuan Wang,&nbsp;Menglu Wang,&nbsp;Xiangying Meng,&nbsp;Jinjuan Qiao\",\"doi\":\"10.2174/0929866530666230315113624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (<i>Mtb</i>) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-<i>Mtb</i> in the future.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":\"30 4\",\"pages\":\"280-294\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0929866530666230315113624\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0929866530666230315113624","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结核病(TB)的高全球负担和结核分枝杆菌(Mtb)耐药菌株的日益出现强调了对新型抗结核药物的迫切需要。抗菌肽是广泛存在于多种生物体内的小肽,通常具有两亲性阳离子结构,对带负电荷的细菌细胞壁具有选择性亲和力。除了直接的杀菌机制,包括与细菌细胞膜相互作用和干扰细胞壁、DNA或蛋白质的生物合成外,一些amp还参与宿主的先天免疫。抗菌肽具有多种抗菌机制和较低的细胞毒性,是治疗耐药结核病的有希望的替代或补充药物。从人到噬菌体来源,大量合成或天然的抗菌肽在体外和体内均显示出强大的抗分枝杆菌活性。本文就抗菌肽的特点、抗菌活性及其作用机制进行了综述。尽管抗菌肽生物利用度低、成本高、难以大规模生产等原因尚未达到临床应用的预期,但其不同于传统抗生素的强大抑菌活性和作用机制,使其成为未来抗DR-Mtb的理想抗菌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial Peptides: A Promising Strategy for Anti-tuberculosis Therapeutics.

The high global burden of tuberculosis (TB) and the increasing emergence of the drugresistant (DR) strain of Mycobacterium tuberculosis (Mtb) emphasize the urgent need for novel antimycobacterial agents. Antimicrobial peptides (AMPs) are small peptides widely existing in a variety of organisms and usually have amphiphilic cationic structures, which have a selective affinity to the negatively charged bacterial cell wall. Besides direct bactericidal mechanisms, including interacting with the bacterial cell membrane and interfering with the biosynthesis of the cell wall, DNA, or protein, some AMPs are involved in the host's innate immunity. AMPs are promising alternative or complementary agents for the treatment of DR-TB, given their various antibacterial mechanisms and low cytotoxicity. A large number of AMPs, synthetic or natural, from human to bacteriophage sources, have displayed potent anti-mycobacterial activity in vitro and in vivo. In this review, we summarized the features, antimycobacterial activity, and mechanisms of action of the AMPs according to their sources. Although AMPs have not yet met the expectations for clinical application due to their low bioavailabilities, high cost, and difficulties in large-scale production, their potent antimycobacterial activity and action mechanisms, which are different from conventional antibiotics, make them promising antibacterial agents against DR-Mtb in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信