Aaron Vengalil, Damir Nizamutdinov, Matthew Su, Jason H Huang
{"title":"COVID-19病例中SARS-CoV-2诱发脑病和脑炎的机制。","authors":"Aaron Vengalil, Damir Nizamutdinov, Matthew Su, Jason H Huang","doi":"10.1177/26331055231172522","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 virus caused an unprecedented pandemic around the globe, infecting 36.5 million people and causing the death of over 1 million in the United States of America alone. COVID-19 patients demonstrated respiratory symptoms, cardiovascular complications, and neurologic symptoms, which in most severe cases included encephalopathy and encephalitis. Hypoxia and the uncontrolled proliferation of cytokines are commonly recognized to cause encephalopathy, while the retrograde trans-synaptic spread of the virus is thought to cause encephalitis in SARS-CoV-2-induced pathogenesis. Although recent research revealed some mechanisms explaining the development of neurologic symptoms, it still remains unclear whether interactions between these mechanisms exist. This review focuses on the discussion and analysis of previously reported hypotheses of SARS-CoV-2-induced encephalopathy and encephalitis and looks into possible overlaps between the pathogenesis of both neurological outcomes of the disease. Promising therapeutic approaches to prevent and treat SARS-CoV-2-induced neurological complications are also covered. More studies are needed to further investigate the dominant mechanism of pathogenesis for developing more effective preventative measures in COVID-19 cases with the neurologic presentation.</p>","PeriodicalId":36527,"journal":{"name":"Neuroscience Insights","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/af/10.1177_26331055231172522.PMC10225804.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of SARS-CoV-2-induced Encephalopathy and Encephalitis in COVID-19 Cases.\",\"authors\":\"Aaron Vengalil, Damir Nizamutdinov, Matthew Su, Jason H Huang\",\"doi\":\"10.1177/26331055231172522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SARS-CoV-2 virus caused an unprecedented pandemic around the globe, infecting 36.5 million people and causing the death of over 1 million in the United States of America alone. COVID-19 patients demonstrated respiratory symptoms, cardiovascular complications, and neurologic symptoms, which in most severe cases included encephalopathy and encephalitis. Hypoxia and the uncontrolled proliferation of cytokines are commonly recognized to cause encephalopathy, while the retrograde trans-synaptic spread of the virus is thought to cause encephalitis in SARS-CoV-2-induced pathogenesis. Although recent research revealed some mechanisms explaining the development of neurologic symptoms, it still remains unclear whether interactions between these mechanisms exist. This review focuses on the discussion and analysis of previously reported hypotheses of SARS-CoV-2-induced encephalopathy and encephalitis and looks into possible overlaps between the pathogenesis of both neurological outcomes of the disease. Promising therapeutic approaches to prevent and treat SARS-CoV-2-induced neurological complications are also covered. More studies are needed to further investigate the dominant mechanism of pathogenesis for developing more effective preventative measures in COVID-19 cases with the neurologic presentation.</p>\",\"PeriodicalId\":36527,\"journal\":{\"name\":\"Neuroscience Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/af/10.1177_26331055231172522.PMC10225804.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26331055231172522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26331055231172522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mechanisms of SARS-CoV-2-induced Encephalopathy and Encephalitis in COVID-19 Cases.
The SARS-CoV-2 virus caused an unprecedented pandemic around the globe, infecting 36.5 million people and causing the death of over 1 million in the United States of America alone. COVID-19 patients demonstrated respiratory symptoms, cardiovascular complications, and neurologic symptoms, which in most severe cases included encephalopathy and encephalitis. Hypoxia and the uncontrolled proliferation of cytokines are commonly recognized to cause encephalopathy, while the retrograde trans-synaptic spread of the virus is thought to cause encephalitis in SARS-CoV-2-induced pathogenesis. Although recent research revealed some mechanisms explaining the development of neurologic symptoms, it still remains unclear whether interactions between these mechanisms exist. This review focuses on the discussion and analysis of previously reported hypotheses of SARS-CoV-2-induced encephalopathy and encephalitis and looks into possible overlaps between the pathogenesis of both neurological outcomes of the disease. Promising therapeutic approaches to prevent and treat SARS-CoV-2-induced neurological complications are also covered. More studies are needed to further investigate the dominant mechanism of pathogenesis for developing more effective preventative measures in COVID-19 cases with the neurologic presentation.