Jade Flinn, Andrew Michalek, Lindsay Bow, Noreen A Hynes, Donald Philpot, Brian T Garibaldi
{"title":"使用温度及压力数据记录仪验证A类医疗废物的蒸汽灭菌。","authors":"Jade Flinn, Andrew Michalek, Lindsay Bow, Noreen A Hynes, Donald Philpot, Brian T Garibaldi","doi":"10.1089/apb.2022.0003","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Over the past decade, there have been outbreaks associated with high consequence infectious diseases such as Ebola virus disease, Lassa fever, and Monkeypox. The proper handling of clinical waste from patients infected with such pathogens is critical to ensure healthcare personnel and community safety.</p><p><strong>Methods: </strong>Mock clinical waste bags were created to simulate four distinct waste streams: personal protective equipment (PPE), dry linens, wet linens, and solidified liquids. Pressure and temperature data loggers were buried in the middle of simulated waste loads to record time at a sterilization temperature of 132°C (270°F) to reduce sterilization time. We also validated super rapid biological indicators (BIs) by embedding standard BIs (48 h), rapid BIs (3 h), and super rapid BIs (24 min) within each load. Cycles were validated over a 2-day period, using a total of 36 simulated waste bags (6 bags each for PPE, dry linen, and wet linen, and 18 bags for solidified liquids).</p><p><strong>Results: </strong>All waste bags achieved the target sterilization temperature, all BIs passed and cycle times were substantially decreased. For PPE waste processing, an estimated 15 h was saved for a 24-h period.</p><p><strong>Discussion: </strong>Default factory settings are inadequate to disinfect Category A clinical waste. Reliance on autoclave temperature readings may overestimate time at goal sterilization temperature for actual waste loads.</p><p><strong>Conclusions: </strong>The data provided by within bag data loggers and BIs allow for the optimization of autoclave parameters to increase throughput and enhance staff safety.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"27 2","pages":"106-115"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908284/pdf/apb.2022.0003.pdf","citationCount":"1","resultStr":"{\"title\":\"The Use of Temperature and Pressure Data Loggers to Validate the Steam Sterilization of Category A Clinical Waste.\",\"authors\":\"Jade Flinn, Andrew Michalek, Lindsay Bow, Noreen A Hynes, Donald Philpot, Brian T Garibaldi\",\"doi\":\"10.1089/apb.2022.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Over the past decade, there have been outbreaks associated with high consequence infectious diseases such as Ebola virus disease, Lassa fever, and Monkeypox. The proper handling of clinical waste from patients infected with such pathogens is critical to ensure healthcare personnel and community safety.</p><p><strong>Methods: </strong>Mock clinical waste bags were created to simulate four distinct waste streams: personal protective equipment (PPE), dry linens, wet linens, and solidified liquids. Pressure and temperature data loggers were buried in the middle of simulated waste loads to record time at a sterilization temperature of 132°C (270°F) to reduce sterilization time. We also validated super rapid biological indicators (BIs) by embedding standard BIs (48 h), rapid BIs (3 h), and super rapid BIs (24 min) within each load. Cycles were validated over a 2-day period, using a total of 36 simulated waste bags (6 bags each for PPE, dry linen, and wet linen, and 18 bags for solidified liquids).</p><p><strong>Results: </strong>All waste bags achieved the target sterilization temperature, all BIs passed and cycle times were substantially decreased. For PPE waste processing, an estimated 15 h was saved for a 24-h period.</p><p><strong>Discussion: </strong>Default factory settings are inadequate to disinfect Category A clinical waste. Reliance on autoclave temperature readings may overestimate time at goal sterilization temperature for actual waste loads.</p><p><strong>Conclusions: </strong>The data provided by within bag data loggers and BIs allow for the optimization of autoclave parameters to increase throughput and enhance staff safety.</p>\",\"PeriodicalId\":7962,\"journal\":{\"name\":\"Applied Biosafety\",\"volume\":\"27 2\",\"pages\":\"106-115\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908284/pdf/apb.2022.0003.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biosafety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/apb.2022.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/apb.2022.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
The Use of Temperature and Pressure Data Loggers to Validate the Steam Sterilization of Category A Clinical Waste.
Introduction: Over the past decade, there have been outbreaks associated with high consequence infectious diseases such as Ebola virus disease, Lassa fever, and Monkeypox. The proper handling of clinical waste from patients infected with such pathogens is critical to ensure healthcare personnel and community safety.
Methods: Mock clinical waste bags were created to simulate four distinct waste streams: personal protective equipment (PPE), dry linens, wet linens, and solidified liquids. Pressure and temperature data loggers were buried in the middle of simulated waste loads to record time at a sterilization temperature of 132°C (270°F) to reduce sterilization time. We also validated super rapid biological indicators (BIs) by embedding standard BIs (48 h), rapid BIs (3 h), and super rapid BIs (24 min) within each load. Cycles were validated over a 2-day period, using a total of 36 simulated waste bags (6 bags each for PPE, dry linen, and wet linen, and 18 bags for solidified liquids).
Results: All waste bags achieved the target sterilization temperature, all BIs passed and cycle times were substantially decreased. For PPE waste processing, an estimated 15 h was saved for a 24-h period.
Discussion: Default factory settings are inadequate to disinfect Category A clinical waste. Reliance on autoclave temperature readings may overestimate time at goal sterilization temperature for actual waste loads.
Conclusions: The data provided by within bag data loggers and BIs allow for the optimization of autoclave parameters to increase throughput and enhance staff safety.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.