Yingjie Wang, Lei Zhang, Ruihong Kong, Cai Hu, Zongyi Zhao, Yuhui Wu, Qisheng Zuo, Bichun Li, Ya-ni Zhang
{"title":"jun介导的lncRNA-IMS通过gga-miR-31-5p/stra8促进鸡精原干细胞减数分裂","authors":"Yingjie Wang, Lei Zhang, Ruihong Kong, Cai Hu, Zongyi Zhao, Yuhui Wu, Qisheng Zuo, Bichun Li, Ya-ni Zhang","doi":"10.1002/mrd.23682","DOIUrl":null,"url":null,"abstract":"<p>Meiosis, a key step in spermatogenesis, is affected by many factors. Current studies have shown that long noncoding RNAs (lncRNAs) are potential factors regulating meiosis, and their regulatory mechanisms have received much attention. However, little research has been done on its regulatory mechanism in the spermatogenesis of roosters. Here, we found that lncRNA involved in meiosis and spermatogenesis (lncRNA-IMS) was involved in the regulation of Stra8 by gga-miR-31-5p and hindered the inhibition of Stra8 by gga-miR-31-5p. The acquisition and loss of function experiments demonstrated that lncRNA-IMS was involved in meiosis and spermatogenesis. In addition, we predicted and determined the core promoter region of lncRNA-IMS. Prediction of transcription factors, deletion/overexpression of binding sites, knockdown/overexpression of Jun, and dual-luciferase reporter analysis confirmed that Jun positively activated transcription of lncRNA-IMS. Our findings further enrich the TF-lncRNA-miRNA-mRNA regulatory network during male meiosis and provide new ideas for studying the molecular mechanism of meiosis and spermatogenesis in chicken spermatogonial stem cells.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 5","pages":"275-286"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Jun-mediated lncRNA-IMS promotes the meiosis of chicken spermatogonial stem cells via gga-miR-31-5p/stra8\",\"authors\":\"Yingjie Wang, Lei Zhang, Ruihong Kong, Cai Hu, Zongyi Zhao, Yuhui Wu, Qisheng Zuo, Bichun Li, Ya-ni Zhang\",\"doi\":\"10.1002/mrd.23682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Meiosis, a key step in spermatogenesis, is affected by many factors. Current studies have shown that long noncoding RNAs (lncRNAs) are potential factors regulating meiosis, and their regulatory mechanisms have received much attention. However, little research has been done on its regulatory mechanism in the spermatogenesis of roosters. Here, we found that lncRNA involved in meiosis and spermatogenesis (lncRNA-IMS) was involved in the regulation of Stra8 by gga-miR-31-5p and hindered the inhibition of Stra8 by gga-miR-31-5p. The acquisition and loss of function experiments demonstrated that lncRNA-IMS was involved in meiosis and spermatogenesis. In addition, we predicted and determined the core promoter region of lncRNA-IMS. Prediction of transcription factors, deletion/overexpression of binding sites, knockdown/overexpression of Jun, and dual-luciferase reporter analysis confirmed that Jun positively activated transcription of lncRNA-IMS. Our findings further enrich the TF-lncRNA-miRNA-mRNA regulatory network during male meiosis and provide new ideas for studying the molecular mechanism of meiosis and spermatogenesis in chicken spermatogonial stem cells.</p>\",\"PeriodicalId\":18856,\"journal\":{\"name\":\"Molecular Reproduction and Development\",\"volume\":\"90 5\",\"pages\":\"275-286\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23682\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23682","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Jun-mediated lncRNA-IMS promotes the meiosis of chicken spermatogonial stem cells via gga-miR-31-5p/stra8
Meiosis, a key step in spermatogenesis, is affected by many factors. Current studies have shown that long noncoding RNAs (lncRNAs) are potential factors regulating meiosis, and their regulatory mechanisms have received much attention. However, little research has been done on its regulatory mechanism in the spermatogenesis of roosters. Here, we found that lncRNA involved in meiosis and spermatogenesis (lncRNA-IMS) was involved in the regulation of Stra8 by gga-miR-31-5p and hindered the inhibition of Stra8 by gga-miR-31-5p. The acquisition and loss of function experiments demonstrated that lncRNA-IMS was involved in meiosis and spermatogenesis. In addition, we predicted and determined the core promoter region of lncRNA-IMS. Prediction of transcription factors, deletion/overexpression of binding sites, knockdown/overexpression of Jun, and dual-luciferase reporter analysis confirmed that Jun positively activated transcription of lncRNA-IMS. Our findings further enrich the TF-lncRNA-miRNA-mRNA regulatory network during male meiosis and provide new ideas for studying the molecular mechanism of meiosis and spermatogenesis in chicken spermatogonial stem cells.
期刊介绍:
Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines.
Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis.