自体造血干细胞的研究现状

IF 3.2 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Zhonglin Li, Ling Yang
{"title":"自体造血干细胞的研究现状","authors":"Zhonglin Li,&nbsp;Ling Yang","doi":"10.1016/j.retram.2023.103377","DOIUrl":null,"url":null,"abstract":"<div><p><span>Hematopoietic stem cells (HSCs) transplantation is an established therapy for many diseases of the hematopoietic system, for example aplastic anemia, acute myeloid leukemia and acute lymphoblastic leukemia. With the development of the HSCs<span> research, HSCs provide an attractive method for treating hereditary blood disorders and immunotherapy of cancer by introducing gene modification. Compared with allogenic HSCs transplantation, using autologous HSCs or HSCs from induced pluripotent stem cells (iPSCs) would eliminate the probability of alloimmunization and transfusion-transmitted infectious diseases. The methods for obtaining autologous HSCs include amplifying patients’ HSCs or inducing patients’ somatic cells to HSCs (graph abstract). However, the biggest problem is inducing HSCs to proliferate </span></span><em>in vitro</em> and maintaining their stemness at the same time. Although many tests have been made to transform iPSCs to HSCs, the artificially generated HSCs still have substantial disparity compared with physiological HSCs. This review summarized the application status and obstacles to implantation of autologous HSCs and iPSC-derived HSCs. Meanwhile, we summarized the latest research progress in HSCs amplification and iPSCs reprogramming methods, which will help to solve the problems mentioned above.</p></div>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":"71 1","pages":"Article 103377"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current status of producing autologous hematopoietic stem cells\",\"authors\":\"Zhonglin Li,&nbsp;Ling Yang\",\"doi\":\"10.1016/j.retram.2023.103377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Hematopoietic stem cells (HSCs) transplantation is an established therapy for many diseases of the hematopoietic system, for example aplastic anemia, acute myeloid leukemia and acute lymphoblastic leukemia. With the development of the HSCs<span> research, HSCs provide an attractive method for treating hereditary blood disorders and immunotherapy of cancer by introducing gene modification. Compared with allogenic HSCs transplantation, using autologous HSCs or HSCs from induced pluripotent stem cells (iPSCs) would eliminate the probability of alloimmunization and transfusion-transmitted infectious diseases. The methods for obtaining autologous HSCs include amplifying patients’ HSCs or inducing patients’ somatic cells to HSCs (graph abstract). However, the biggest problem is inducing HSCs to proliferate </span></span><em>in vitro</em> and maintaining their stemness at the same time. Although many tests have been made to transform iPSCs to HSCs, the artificially generated HSCs still have substantial disparity compared with physiological HSCs. This review summarized the application status and obstacles to implantation of autologous HSCs and iPSC-derived HSCs. Meanwhile, we summarized the latest research progress in HSCs amplification and iPSCs reprogramming methods, which will help to solve the problems mentioned above.</p></div>\",\"PeriodicalId\":54260,\"journal\":{\"name\":\"Current Research in Translational Medicine\",\"volume\":\"71 1\",\"pages\":\"Article 103377\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452318623000016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452318623000016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

造血干细胞(HSCs)移植是治疗许多造血系统疾病的既定方法,例如再生障碍性贫血、急性髓系白血病和急性淋巴细胞白血病。随着造血干细胞研究的发展,造血干细胞通过基因修饰为癌症遗传性血液病的治疗和免疫治疗提供了一种有吸引力的方法。与同种异体造血干细胞移植相比,使用自体造血干细胞或来自诱导多能干细胞的造血干细胞将消除同种免疫和输血传播传染病的可能性。获得自体HSC的方法包括扩增患者的HSC或诱导患者的体细胞为HSC(图摘要)。然而,最大的问题是诱导HSC在体外增殖,同时保持其干性。尽管已经进行了许多将iPSC转化为HSC的测试,但人工产生的HSC与生理HSC相比仍有很大差异。本文综述了自体造血干细胞和iPSC衍生的造血干细胞移植的应用现状和障碍。同时,我们总结了HSC扩增和iPSCs重编程方法的最新研究进展,这将有助于解决上述问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Current status of producing autologous hematopoietic stem cells

Current status of producing autologous hematopoietic stem cells

Hematopoietic stem cells (HSCs) transplantation is an established therapy for many diseases of the hematopoietic system, for example aplastic anemia, acute myeloid leukemia and acute lymphoblastic leukemia. With the development of the HSCs research, HSCs provide an attractive method for treating hereditary blood disorders and immunotherapy of cancer by introducing gene modification. Compared with allogenic HSCs transplantation, using autologous HSCs or HSCs from induced pluripotent stem cells (iPSCs) would eliminate the probability of alloimmunization and transfusion-transmitted infectious diseases. The methods for obtaining autologous HSCs include amplifying patients’ HSCs or inducing patients’ somatic cells to HSCs (graph abstract). However, the biggest problem is inducing HSCs to proliferate in vitro and maintaining their stemness at the same time. Although many tests have been made to transform iPSCs to HSCs, the artificially generated HSCs still have substantial disparity compared with physiological HSCs. This review summarized the application status and obstacles to implantation of autologous HSCs and iPSC-derived HSCs. Meanwhile, we summarized the latest research progress in HSCs amplification and iPSCs reprogramming methods, which will help to solve the problems mentioned above.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Translational Medicine
Current Research in Translational Medicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
7.00
自引率
4.90%
发文量
51
审稿时长
45 days
期刊介绍: Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9). Core areas covered in Current Research in Translational Medicine are: Hematology, Immunology, Infectiology, Hematopoietic, Cell Transplantation, Cellular and Gene Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信