通过DNMT3A靶向MiR-29b水平介导的慢性阻塞性肺疾病Klotho甲基化调控

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Jie Qiu , Xiuming Liu , Guilan Yang , Zhenzhen Gui , Shengquan Ding
{"title":"通过DNMT3A靶向MiR-29b水平介导的慢性阻塞性肺疾病Klotho甲基化调控","authors":"Jie Qiu ,&nbsp;Xiuming Liu ,&nbsp;Guilan Yang ,&nbsp;Zhenzhen Gui ,&nbsp;Shengquan Ding","doi":"10.1016/j.cdev.2023.203827","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chronic obstructive pulmonary disease<span> (COPD) is a chronic lung disease characterized by chronic bronchitis and emphysema. Cigarette smoke extract (CSE) is the predominant cause of COPD. This study aimed to investigate the effects of miR-29b and their underlying mechanisms in a COPD cell model. MiR-29b and DNMT3A expression in lung tissue samples (taken at least 5 cm away from the tumor lesion) of NSCLC cases with smoking (n = 30), without smoking (n = 30), and with COPD (with smoking) (n = 30) was researched by qRT-PCR. A medium containing 10 % CSE was employed to induce murine </span></span>alveolar macrophage<span><span> MH-S cells to establish COPD cells. 5-Aza-cdr (5-AZA-2′-deoxycytidine) was used to block DNMT3A. The relationship and interaction between miR-29b and DNMT3A were validated through the dual luciferase<span><span> reporter assay. The expression levels of macrophage M1 polarization marker proteins iNOS and TNF-α, DNMT3A, and Klotho protein were monitored using </span>western blotting. The </span></span>methylation<span><span> levels of the miR-29b precursor gene and Klotho promoter were detected by quantitative methylation-specific PCR (MS-qPCR). The levels of IL-1β, IL-6, and TNF-α in cell culture medium were detected via ELISA. It was found that the expression of miR-29b was downregulated, as a result of increased </span>DNA methylation, and that of DNMT3A was upregulated in the lung tissues of NSCLC cases with COPD (with smoking). DNMT3A expression was negatively correlated with miR-29b expression in the lung tissues of NSCLC cases with COPD (with smoking). In addition, miR-29b expression was distinctly downregulated in CSE-induced MH-S cells and inhibited CSE-induced M1 polarization and inflammation. Importantly, DNMT3A was identified as a direct target gene of miR-29b. MiR-29b is negatively regulated by DNMT3A-mediated DNA methylation. Moreover, Klotho expression was downregulated and the Klotho promoter methylation level was increased in lung tissues of NSCLC cases with COPD (with smoking). The negative feedback between miR-29b and DNMT3A modulates CSE-induced M1 polarization and inflammation in macrophages as well as Klotho promoter methylation in CSE-mediated MH-S. Collectively, these findings indicate that the miR-29b level in COPD controls Klotho methylation via DNMT3, which maybe a promising target for the treatment of COPD.</span></span></p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"174 ","pages":"Article 203827"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-29b level-mediated regulation of Klotho methylation via DNMT3A targeting in chronic obstructive pulmonary disease\",\"authors\":\"Jie Qiu ,&nbsp;Xiuming Liu ,&nbsp;Guilan Yang ,&nbsp;Zhenzhen Gui ,&nbsp;Shengquan Ding\",\"doi\":\"10.1016/j.cdev.2023.203827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Chronic obstructive pulmonary disease<span> (COPD) is a chronic lung disease characterized by chronic bronchitis and emphysema. Cigarette smoke extract (CSE) is the predominant cause of COPD. This study aimed to investigate the effects of miR-29b and their underlying mechanisms in a COPD cell model. MiR-29b and DNMT3A expression in lung tissue samples (taken at least 5 cm away from the tumor lesion) of NSCLC cases with smoking (n = 30), without smoking (n = 30), and with COPD (with smoking) (n = 30) was researched by qRT-PCR. A medium containing 10 % CSE was employed to induce murine </span></span>alveolar macrophage<span><span> MH-S cells to establish COPD cells. 5-Aza-cdr (5-AZA-2′-deoxycytidine) was used to block DNMT3A. The relationship and interaction between miR-29b and DNMT3A were validated through the dual luciferase<span><span> reporter assay. The expression levels of macrophage M1 polarization marker proteins iNOS and TNF-α, DNMT3A, and Klotho protein were monitored using </span>western blotting. The </span></span>methylation<span><span> levels of the miR-29b precursor gene and Klotho promoter were detected by quantitative methylation-specific PCR (MS-qPCR). The levels of IL-1β, IL-6, and TNF-α in cell culture medium were detected via ELISA. It was found that the expression of miR-29b was downregulated, as a result of increased </span>DNA methylation, and that of DNMT3A was upregulated in the lung tissues of NSCLC cases with COPD (with smoking). DNMT3A expression was negatively correlated with miR-29b expression in the lung tissues of NSCLC cases with COPD (with smoking). In addition, miR-29b expression was distinctly downregulated in CSE-induced MH-S cells and inhibited CSE-induced M1 polarization and inflammation. Importantly, DNMT3A was identified as a direct target gene of miR-29b. MiR-29b is negatively regulated by DNMT3A-mediated DNA methylation. Moreover, Klotho expression was downregulated and the Klotho promoter methylation level was increased in lung tissues of NSCLC cases with COPD (with smoking). The negative feedback between miR-29b and DNMT3A modulates CSE-induced M1 polarization and inflammation in macrophages as well as Klotho promoter methylation in CSE-mediated MH-S. Collectively, these findings indicate that the miR-29b level in COPD controls Klotho methylation via DNMT3, which maybe a promising target for the treatment of COPD.</span></span></p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":\"174 \",\"pages\":\"Article 203827\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667290123000037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290123000037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

慢性阻塞性肺病(COPD)是一种以慢性支气管炎和肺气肿为特征的慢性肺部疾病。香烟烟雾提取物(CSE)是COPD的主要病因。本研究旨在研究miR-29b在COPD细胞模型中的作用及其潜在机制。通过qRT-PCR研究了吸烟(n=30)、不吸烟(n=3 0)和COPD(吸烟)(n=5 0)的NSCLC患者肺组织样本(距离肿瘤病变至少5cm)中MiR-29b和DNMT3A的表达。采用含有10%CSE的培养基诱导小鼠肺泡巨噬细胞MH-S细胞建立COPD细胞。5-Aza-cdr(5-Aza-2′-脱氧胞苷)用于阻断DNMT3A。miR-29b和DNMT3A之间的关系和相互作用通过双荧光素酶报告基因测定得到验证。使用蛋白质印迹法监测巨噬细胞M1极化标记蛋白iNOS和TNF-α、DNMT3A和Klotho蛋白的表达水平。通过定量甲基化特异性PCR(MS-qPCR)检测miR-29b前体基因和Klotho启动子的甲基化水平。ELISA法检测细胞培养基中IL-1β、IL-6和TNF-α的水平。研究发现,miR-29b的表达下调,这是DNA甲基化增加的结果,而DNMT3A的表达在患有COPD(吸烟)的NSCLC患者的肺组织中上调。在患有COPD(吸烟)的NSCLC患者的肺组织中,DNMT3A的表达与miR-29b的表达呈负相关。此外,miR-29b的表达在CSE诱导的MH-S细胞中明显下调,并抑制CSE诱导M1极化和炎症。重要的是,DNMT3A被鉴定为miR-29b的直接靶基因。MiR-29b受到DNMT3A介导的DNA甲基化的负调控。此外,COPD(吸烟)NSCLC患者肺组织中Klotho表达下调,Klotho启动子甲基化水平升高。miR-29b和DNMT3A之间的负反馈调节CSE诱导的巨噬细胞M1极化和炎症,以及CSE介导的MH-S中的Klotho启动子甲基化。总之,这些发现表明,COPD中miR-29b水平通过DNMT3控制Klotho甲基化,这可能是治疗COPD的一个有前景的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiR-29b level-mediated regulation of Klotho methylation via DNMT3A targeting in chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by chronic bronchitis and emphysema. Cigarette smoke extract (CSE) is the predominant cause of COPD. This study aimed to investigate the effects of miR-29b and their underlying mechanisms in a COPD cell model. MiR-29b and DNMT3A expression in lung tissue samples (taken at least 5 cm away from the tumor lesion) of NSCLC cases with smoking (n = 30), without smoking (n = 30), and with COPD (with smoking) (n = 30) was researched by qRT-PCR. A medium containing 10 % CSE was employed to induce murine alveolar macrophage MH-S cells to establish COPD cells. 5-Aza-cdr (5-AZA-2′-deoxycytidine) was used to block DNMT3A. The relationship and interaction between miR-29b and DNMT3A were validated through the dual luciferase reporter assay. The expression levels of macrophage M1 polarization marker proteins iNOS and TNF-α, DNMT3A, and Klotho protein were monitored using western blotting. The methylation levels of the miR-29b precursor gene and Klotho promoter were detected by quantitative methylation-specific PCR (MS-qPCR). The levels of IL-1β, IL-6, and TNF-α in cell culture medium were detected via ELISA. It was found that the expression of miR-29b was downregulated, as a result of increased DNA methylation, and that of DNMT3A was upregulated in the lung tissues of NSCLC cases with COPD (with smoking). DNMT3A expression was negatively correlated with miR-29b expression in the lung tissues of NSCLC cases with COPD (with smoking). In addition, miR-29b expression was distinctly downregulated in CSE-induced MH-S cells and inhibited CSE-induced M1 polarization and inflammation. Importantly, DNMT3A was identified as a direct target gene of miR-29b. MiR-29b is negatively regulated by DNMT3A-mediated DNA methylation. Moreover, Klotho expression was downregulated and the Klotho promoter methylation level was increased in lung tissues of NSCLC cases with COPD (with smoking). The negative feedback between miR-29b and DNMT3A modulates CSE-induced M1 polarization and inflammation in macrophages as well as Klotho promoter methylation in CSE-mediated MH-S. Collectively, these findings indicate that the miR-29b level in COPD controls Klotho methylation via DNMT3, which maybe a promising target for the treatment of COPD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信