一阶溶解速率的推导,以估计粒子在人呼吸道的清除率和负荷。

IF 7.2 1区 医学 Q1 TOXICOLOGY
James S Brown, Gary L Diamond
{"title":"一阶溶解速率的推导,以估计粒子在人呼吸道的清除率和负荷。","authors":"James S Brown,&nbsp;Gary L Diamond","doi":"10.1186/s12989-023-00523-z","DOIUrl":null,"url":null,"abstract":"<p><p>Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"20 1","pages":"17"},"PeriodicalIF":7.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.\",\"authors\":\"James S Brown,&nbsp;Gary L Diamond\",\"doi\":\"10.1186/s12989-023-00523-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"20 1\",\"pages\":\"17\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-023-00523-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-023-00523-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

吸入是气溶胶通过呼吸道进入的入口,其中颗粒负荷的积累取决于颗粒沉积的位置、正常的清除机制和颗粒的溶解度。粒子溶解的可用时间是由粒子从一个区域的清除率和它们在呼吸溶剂中的溶解度之间的平衡决定的。溶解度是粒子表面积除以粒子体积或质量的函数(即,溶解度与粒子的物理直径成反比)。作为一种保守的方法,研究人员通常假设沉积在呼吸道肺泡区的颗粒中的金属完全瞬间溶解。我们推导了一级溶解速率常数,以促进颗粒清除、溶解和吸收到血液中的生物动力学建模。然后,我们将肺负荷和颗粒总溶解随时间的变化建模为颗粒大小、密度和溶解度的函数。我们的研究表明,假设难溶性颗粒形式进入血液的速度与高溶性颗粒形式一样快,会导致对血液和其他肺外组织中感兴趣的化合物浓度的高估,同时也低估了其肺负担。我们的结论是,除了模拟颗粒沉积到肺部的剂量率外,还可以通过包括肺负荷和颗粒溶解随时间的估计来改进基于生理学的肺和肺外组织中度和低溶性物质浓度的药代动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.

Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.

Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.

Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract.

Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信