神秘的四磷酸二腺苷(AP4A)

microLife Pub Date : 2023-01-01 DOI:10.1093/femsml/uqad016
Victor Zegarra, Christopher-Nils Mais, Johannes Freitag, Gert Bange
{"title":"神秘的四磷酸二腺苷(AP4A)","authors":"Victor Zegarra,&nbsp;Christopher-Nils Mais,&nbsp;Johannes Freitag,&nbsp;Gert Bange","doi":"10.1093/femsml/uqad016","DOIUrl":null,"url":null,"abstract":"<p><p>Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148737/pdf/","citationCount":"0","resultStr":"{\"title\":\"The mysterious diadenosine tetraphosphate (AP4A).\",\"authors\":\"Victor Zegarra,&nbsp;Christopher-Nils Mais,&nbsp;Johannes Freitag,&nbsp;Gert Bange\",\"doi\":\"10.1093/femsml/uqad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqad016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二核苷多磷酸是在所有生命之树中发现的一类核苷酸,在过去的几十年里,由于它们被认为是细胞警报器的作用,已经引起了人们的广泛关注。特别是,四磷酸二腺苷(AP4A)在面临各种环境挑战的细菌中得到了广泛的研究,并被认为是确保细胞在恶劣条件下存活的重要因素。在这里,我们讨论了目前对AP4A合成和降解的理解,蛋白质靶点,它们的分子结构,以及AP4A作用的分子机制及其生理后果的见解。最后,考虑到AP4A在真核世界中越来越多的出现,我们将简要地介绍一下细菌界之外的AP4A。总的来说,AP4A是从细菌到人类等生物中保守的第二信使,能够发出信号并调节细胞应激调节,这一观点似乎很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The mysterious diadenosine tetraphosphate (AP4A).

The mysterious diadenosine tetraphosphate (AP4A).

The mysterious diadenosine tetraphosphate (AP4A).

Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信