IOL公式常数优化的粒子群优化策略。

IF 3 3区 医学 Q1 OPHTHALMOLOGY
Achim Langenbucher, Nóra Szentmáry, Alan Cayless, Jascha Wendelstein, Peter Hoffmann
{"title":"IOL公式常数优化的粒子群优化策略。","authors":"Achim Langenbucher,&nbsp;Nóra Szentmáry,&nbsp;Alan Cayless,&nbsp;Jascha Wendelstein,&nbsp;Peter Hoffmann","doi":"10.1111/aos.15664","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>To investigate particle swarm optimisation (PSO) as a modern purely data driven non-linear iterative strategy for lens formula constant optimisation in intraocular lens power calculation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A PSO algorithm was implemented for optimising the root mean squared formula prediction error (rmsPE, defined as achieved refraction minus predicted refraction) for the Castrop formula in a dataset of <i>N</i> = 888 cataractous eyes with implantation of the Hoya Vivinex hydrophobic acrylic aspheric lens. The hyperparameters were set to inertia: 0.8, accelerations c1 = c2 = 0.1. The algorithm was initialised with <i>N</i><sub>P</sub> = 100 particles having random positions and velocities within the box constraints of the constant triplet parameter space C = 0.25 to 0.45, H = −0.25 to 0.25 and R = −0.25 to 0.25. The performance of the algorithm was compared to classical gradient-based Trust-Region-Reflective and Interior-Point algorithms.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The PSO algorithm showed fast and stable convergence after 37 iterations. The rmsPE reduced systematically to 0.3440 diopters (D). With further iterations the scatter of the particle positions in the swarm decreased but without further reduction of rmsPE. The final constant triplet was C/H/R = 0.2982/0.2497/0.1435. The Trust-Region-Reflective/Interior-Point algorithms showed convergence after 27/17 iterations, respectively, resulting in formula constant triplets C/H/R = 0.2982/0.2496/0.1436 and 0.2982/0.2495/0.1436, both with the same rmsPE as the PSO algorithm (rmsPE = 0.3440 D).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The PSO appears to be a powerful adaptive nonlinear iteration algorithm for formula constant optimisation even in formulae with more than 1 constant. It acts independently of an analytical or numerical gradient and is in general able to search for the best solution even with multiple local minima of the target function.</p>\n </section>\n </div>","PeriodicalId":6915,"journal":{"name":"Acta Ophthalmologica","volume":"101 7","pages":"775-782"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aos.15664","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimisation strategies for IOL formula constant optimisation\",\"authors\":\"Achim Langenbucher,&nbsp;Nóra Szentmáry,&nbsp;Alan Cayless,&nbsp;Jascha Wendelstein,&nbsp;Peter Hoffmann\",\"doi\":\"10.1111/aos.15664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>To investigate particle swarm optimisation (PSO) as a modern purely data driven non-linear iterative strategy for lens formula constant optimisation in intraocular lens power calculation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A PSO algorithm was implemented for optimising the root mean squared formula prediction error (rmsPE, defined as achieved refraction minus predicted refraction) for the Castrop formula in a dataset of <i>N</i> = 888 cataractous eyes with implantation of the Hoya Vivinex hydrophobic acrylic aspheric lens. The hyperparameters were set to inertia: 0.8, accelerations c1 = c2 = 0.1. The algorithm was initialised with <i>N</i><sub>P</sub> = 100 particles having random positions and velocities within the box constraints of the constant triplet parameter space C = 0.25 to 0.45, H = −0.25 to 0.25 and R = −0.25 to 0.25. The performance of the algorithm was compared to classical gradient-based Trust-Region-Reflective and Interior-Point algorithms.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The PSO algorithm showed fast and stable convergence after 37 iterations. The rmsPE reduced systematically to 0.3440 diopters (D). With further iterations the scatter of the particle positions in the swarm decreased but without further reduction of rmsPE. The final constant triplet was C/H/R = 0.2982/0.2497/0.1435. The Trust-Region-Reflective/Interior-Point algorithms showed convergence after 27/17 iterations, respectively, resulting in formula constant triplets C/H/R = 0.2982/0.2496/0.1436 and 0.2982/0.2495/0.1436, both with the same rmsPE as the PSO algorithm (rmsPE = 0.3440 D).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The PSO appears to be a powerful adaptive nonlinear iteration algorithm for formula constant optimisation even in formulae with more than 1 constant. It acts independently of an analytical or numerical gradient and is in general able to search for the best solution even with multiple local minima of the target function.</p>\\n </section>\\n </div>\",\"PeriodicalId\":6915,\"journal\":{\"name\":\"Acta Ophthalmologica\",\"volume\":\"101 7\",\"pages\":\"775-782\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aos.15664\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Ophthalmologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aos.15664\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Ophthalmologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aos.15664","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究粒子群优化(PSO)作为一种现代纯数据驱动的非线性迭代策略,用于人工晶状体屈光度计算中的晶状体公式常数优化。方法:在N的数据集中,实现PSO算法来优化Castrop公式的均方根公式预测误差(rmsPE,定义为实现的折射减去预测的折射)= 888眼白内障,植入Hoya Vivinex疏水性丙烯酸非球面透镜。超参数设置为惯性:0.8,加速度c1=c2=0.1。该算法是用NP初始化的= 在恒定三重参数空间C=0.25至0.45、H=-0.25至0.25和R=-0.25至0.25%的框约束内具有随机位置和速度的100个粒子。将该算法的性能与经典的基于梯度的信赖域反射算法和内点算法进行了比较。结果:PSO算法经过37次迭代后,收敛速度快且稳定。rmsPE系统地降低到0.3440屈光度(D)。随着进一步的迭代,粒子群中粒子位置的散射减少,但rmsPE没有进一步减少。最终的常数三重态为C/H/R=0.2982/0.2497/0.1435。信赖域反射/内点算法在27/17次迭代后分别显示出收敛性,导致公式常数三元组C/H/R=0.2982/0.2496/0.1436和0.2982/0.2455/0.1436,两者的rmsPE均与PSO算法相同(rmsPE=0.3440 D)。结论:即使在常数大于1的公式中,PSO算法也是一种强大的公式常数优化自适应非线性迭代算法。它独立于分析或数值梯度,并且通常能够在目标函数具有多个局部极小值的情况下搜索最佳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Particle swarm optimisation strategies for IOL formula constant optimisation

Particle swarm optimisation strategies for IOL formula constant optimisation

Purpose

To investigate particle swarm optimisation (PSO) as a modern purely data driven non-linear iterative strategy for lens formula constant optimisation in intraocular lens power calculation.

Methods

A PSO algorithm was implemented for optimising the root mean squared formula prediction error (rmsPE, defined as achieved refraction minus predicted refraction) for the Castrop formula in a dataset of N = 888 cataractous eyes with implantation of the Hoya Vivinex hydrophobic acrylic aspheric lens. The hyperparameters were set to inertia: 0.8, accelerations c1 = c2 = 0.1. The algorithm was initialised with NP = 100 particles having random positions and velocities within the box constraints of the constant triplet parameter space C = 0.25 to 0.45, H = −0.25 to 0.25 and R = −0.25 to 0.25. The performance of the algorithm was compared to classical gradient-based Trust-Region-Reflective and Interior-Point algorithms.

Results

The PSO algorithm showed fast and stable convergence after 37 iterations. The rmsPE reduced systematically to 0.3440 diopters (D). With further iterations the scatter of the particle positions in the swarm decreased but without further reduction of rmsPE. The final constant triplet was C/H/R = 0.2982/0.2497/0.1435. The Trust-Region-Reflective/Interior-Point algorithms showed convergence after 27/17 iterations, respectively, resulting in formula constant triplets C/H/R = 0.2982/0.2496/0.1436 and 0.2982/0.2495/0.1436, both with the same rmsPE as the PSO algorithm (rmsPE = 0.3440 D).

Conclusion

The PSO appears to be a powerful adaptive nonlinear iteration algorithm for formula constant optimisation even in formulae with more than 1 constant. It acts independently of an analytical or numerical gradient and is in general able to search for the best solution even with multiple local minima of the target function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Ophthalmologica
Acta Ophthalmologica 医学-眼科学
CiteScore
7.60
自引率
5.90%
发文量
433
审稿时长
6 months
期刊介绍: Acta Ophthalmologica is published on behalf of the Acta Ophthalmologica Scandinavica Foundation and is the official scientific publication of the following societies: The Danish Ophthalmological Society, The Finnish Ophthalmological Society, The Icelandic Ophthalmological Society, The Norwegian Ophthalmological Society and The Swedish Ophthalmological Society, and also the European Association for Vision and Eye Research (EVER). Acta Ophthalmologica publishes clinical and experimental original articles, reviews, editorials, educational photo essays (Diagnosis and Therapy in Ophthalmology), case reports and case series, letters to the editor and doctoral theses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信