Jie Xu, Jia Yao, Hang Zhai, Qimeng Li, Qi Xu, Ying Xiang, Yaxi Liu, Tianhong Liu, Huili Ma, Yan Mao, Fengkai Wu, Qingjun Wang, Xuanjun Feng, Jiong Mu, Yanli Lu
{"title":"TrichomeYOLO:一种玉米毛自动计数的神经网络。","authors":"Jie Xu, Jia Yao, Hang Zhai, Qimeng Li, Qi Xu, Ying Xiang, Yaxi Liu, Tianhong Liu, Huili Ma, Yan Mao, Fengkai Wu, Qingjun Wang, Xuanjun Feng, Jiong Mu, Yanli Lu","doi":"10.34133/plantphenomics.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Plant trichomes are epidermal structures with a wide variety of functions in plant development and stress responses. Although the functional importance of trichomes has been realized, the tedious and time-consuming manual phenotyping process greatly limits the research progress of trichome gene cloning. Currently, there are no fully automated methods for identifying maize trichomes. We introduce TrichomeYOLO, an automated trichome counting and measuring method that uses a deep convolutional neural network, to identify the density and length of maize trichomes from scanning electron microscopy images. Our network achieved 92.1% identification accuracy on scanning electron microscopy micrographs of maize leaves, which is much better performed than the other 5 currently mainstream object detection models, Faster R-CNN, YOLOv3, YOLOv5, DETR, and Cascade R-CNN. We applied TrichomeYOLO to investigate trichome variations in a natural population of maize and achieved robust trichome identification. Our method and the pretrained model are open access in Github (https://github.com/yaober/trichomecounter). We believe TrichomeYOLO will help make efficient trichome identification and help facilitate researches on maize trichomes.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0024"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013788/pdf/","citationCount":"3","resultStr":"{\"title\":\"TrichomeYOLO: A Neural Network for Automatic Maize Trichome Counting.\",\"authors\":\"Jie Xu, Jia Yao, Hang Zhai, Qimeng Li, Qi Xu, Ying Xiang, Yaxi Liu, Tianhong Liu, Huili Ma, Yan Mao, Fengkai Wu, Qingjun Wang, Xuanjun Feng, Jiong Mu, Yanli Lu\",\"doi\":\"10.34133/plantphenomics.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant trichomes are epidermal structures with a wide variety of functions in plant development and stress responses. Although the functional importance of trichomes has been realized, the tedious and time-consuming manual phenotyping process greatly limits the research progress of trichome gene cloning. Currently, there are no fully automated methods for identifying maize trichomes. We introduce TrichomeYOLO, an automated trichome counting and measuring method that uses a deep convolutional neural network, to identify the density and length of maize trichomes from scanning electron microscopy images. Our network achieved 92.1% identification accuracy on scanning electron microscopy micrographs of maize leaves, which is much better performed than the other 5 currently mainstream object detection models, Faster R-CNN, YOLOv3, YOLOv5, DETR, and Cascade R-CNN. We applied TrichomeYOLO to investigate trichome variations in a natural population of maize and achieved robust trichome identification. Our method and the pretrained model are open access in Github (https://github.com/yaober/trichomecounter). We believe TrichomeYOLO will help make efficient trichome identification and help facilitate researches on maize trichomes.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"5 \",\"pages\":\"0024\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013788/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0024\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0024","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
TrichomeYOLO: A Neural Network for Automatic Maize Trichome Counting.
Plant trichomes are epidermal structures with a wide variety of functions in plant development and stress responses. Although the functional importance of trichomes has been realized, the tedious and time-consuming manual phenotyping process greatly limits the research progress of trichome gene cloning. Currently, there are no fully automated methods for identifying maize trichomes. We introduce TrichomeYOLO, an automated trichome counting and measuring method that uses a deep convolutional neural network, to identify the density and length of maize trichomes from scanning electron microscopy images. Our network achieved 92.1% identification accuracy on scanning electron microscopy micrographs of maize leaves, which is much better performed than the other 5 currently mainstream object detection models, Faster R-CNN, YOLOv3, YOLOv5, DETR, and Cascade R-CNN. We applied TrichomeYOLO to investigate trichome variations in a natural population of maize and achieved robust trichome identification. Our method and the pretrained model are open access in Github (https://github.com/yaober/trichomecounter). We believe TrichomeYOLO will help make efficient trichome identification and help facilitate researches on maize trichomes.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.