{"title":"秀丽隐杆线虫两性的连接体作为图像分类器。","authors":"Changjoo Park, Jinseop S Kim","doi":"10.5607/en23004","DOIUrl":null,"url":null,"abstract":"<p><p>Connectome, the complete wiring diagram of the nervous system of an organism, is the biological substrate of the mind. While biological neural networks are crucial to the understanding of neural computation mechanisms, recent artificial neural networks (ANNs) have been developed independently from the study of real neural networks. Computational scientists are searching for various ANN architectures to improve machine learning since the architectures are associated with the accuracy of ANNs. A recent study used the hermaphrodite <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) connectome for image classification tasks, where the edge directions were changed to construct a directed acyclic graph (DAG). In this study, we used the whole-animal connectomes of <i>C. elegans</i> hermaphrodite and male to construct a DAG that preserves the chief information flow in the connectomes and trained them for image classification of MNIST and fashion-MNIST datasets. The connectome-inspired neural networks exhibited over 99.5% and 92.6% of accuracy for MNIST and fashion-MNIST datasets, respectively, which increased from the previous study. Together, we conclude that realistic biological neural networks provide the basis of a plausible ANN architecture. This study suggests that biological networks can provide new inspiration to improve artificial intelligences (AIs).</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"102-109"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/6a/en-32-2-102.PMC10175957.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>Caenorhabditis elegans</i> Connectomes of both Sexes as Image Classifiers.\",\"authors\":\"Changjoo Park, Jinseop S Kim\",\"doi\":\"10.5607/en23004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Connectome, the complete wiring diagram of the nervous system of an organism, is the biological substrate of the mind. While biological neural networks are crucial to the understanding of neural computation mechanisms, recent artificial neural networks (ANNs) have been developed independently from the study of real neural networks. Computational scientists are searching for various ANN architectures to improve machine learning since the architectures are associated with the accuracy of ANNs. A recent study used the hermaphrodite <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) connectome for image classification tasks, where the edge directions were changed to construct a directed acyclic graph (DAG). In this study, we used the whole-animal connectomes of <i>C. elegans</i> hermaphrodite and male to construct a DAG that preserves the chief information flow in the connectomes and trained them for image classification of MNIST and fashion-MNIST datasets. The connectome-inspired neural networks exhibited over 99.5% and 92.6% of accuracy for MNIST and fashion-MNIST datasets, respectively, which increased from the previous study. Together, we conclude that realistic biological neural networks provide the basis of a plausible ANN architecture. This study suggests that biological networks can provide new inspiration to improve artificial intelligences (AIs).</p>\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":\"32 2\",\"pages\":\"102-109\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/6a/en-32-2-102.PMC10175957.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en23004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en23004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Caenorhabditis elegans Connectomes of both Sexes as Image Classifiers.
Connectome, the complete wiring diagram of the nervous system of an organism, is the biological substrate of the mind. While biological neural networks are crucial to the understanding of neural computation mechanisms, recent artificial neural networks (ANNs) have been developed independently from the study of real neural networks. Computational scientists are searching for various ANN architectures to improve machine learning since the architectures are associated with the accuracy of ANNs. A recent study used the hermaphrodite Caenorhabditis elegans (C. elegans) connectome for image classification tasks, where the edge directions were changed to construct a directed acyclic graph (DAG). In this study, we used the whole-animal connectomes of C. elegans hermaphrodite and male to construct a DAG that preserves the chief information flow in the connectomes and trained them for image classification of MNIST and fashion-MNIST datasets. The connectome-inspired neural networks exhibited over 99.5% and 92.6% of accuracy for MNIST and fashion-MNIST datasets, respectively, which increased from the previous study. Together, we conclude that realistic biological neural networks provide the basis of a plausible ANN architecture. This study suggests that biological networks can provide new inspiration to improve artificial intelligences (AIs).
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.