Hammad Irshad, Justyna Kulpa, Philip J Kuehl, Tim Lefever, Jacob D McDonald
{"title":"来自大麻衍生的预滚接头的气溶胶特性。","authors":"Hammad Irshad, Justyna Kulpa, Philip J Kuehl, Tim Lefever, Jacob D McDonald","doi":"10.1080/08958378.2023.2206448","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Availability and consumer use of hemp products is rapidly increasing, but little work has been done to assess aerosol emissions of hemp pre-rolls. The objective of this research was to characterize the aerosol of pre-rolled joints from hemp material enriched for production of cannabigerol (CBG) that were smoked on a test system mimicking human use patterns.</p><p><strong>Materials and methods: </strong>Aerosol emissions were collected and analyzed using glass microfiber filters and charcoal cartridges. The aerosol was screened for nine phytocannabinoids and 19 terpenes.</p><p><strong>Results: </strong>Three phytocannabinoids (CBG, cannabichromene (CBC), and delta-9-tetrahydrocannabinol (THC)) were detected and quantified at a mean (SD) concentration of 19.4 (4.7), 0.48 (0.01), and 0.40 (0.04) mg per pre-roll, respectively. Five terpenes ((-)-α-bisabolol, (-)-guaiol, β-caryophyllene, nerolidol, and α-humulene) were detected and quantified at an average concentration of 352.7 (112.0), 194.3 (66.4), 106.0 (50.4), 28.3 (9.3), and 27.7 (11.2) µg per pre-roll, respectively. Particle size distribution testing via aerodynamic particle sizer and inertial impactor showed that average size of emitted aerosols was 0.77 (0.0) and 0.54 (0.1) µm, respectively.</p><p><strong>Conclusions: </strong>This study describes methodology for characterization of cannabinoid and terpene dose in emitted aerosols and aerosolization efficiency from hemp pre-rolls. It also presents these data for one of the marketed products.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":"35 5-6","pages":"169-174"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of aerosols from hemp-derived pre-roll joints.\",\"authors\":\"Hammad Irshad, Justyna Kulpa, Philip J Kuehl, Tim Lefever, Jacob D McDonald\",\"doi\":\"10.1080/08958378.2023.2206448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Availability and consumer use of hemp products is rapidly increasing, but little work has been done to assess aerosol emissions of hemp pre-rolls. The objective of this research was to characterize the aerosol of pre-rolled joints from hemp material enriched for production of cannabigerol (CBG) that were smoked on a test system mimicking human use patterns.</p><p><strong>Materials and methods: </strong>Aerosol emissions were collected and analyzed using glass microfiber filters and charcoal cartridges. The aerosol was screened for nine phytocannabinoids and 19 terpenes.</p><p><strong>Results: </strong>Three phytocannabinoids (CBG, cannabichromene (CBC), and delta-9-tetrahydrocannabinol (THC)) were detected and quantified at a mean (SD) concentration of 19.4 (4.7), 0.48 (0.01), and 0.40 (0.04) mg per pre-roll, respectively. Five terpenes ((-)-α-bisabolol, (-)-guaiol, β-caryophyllene, nerolidol, and α-humulene) were detected and quantified at an average concentration of 352.7 (112.0), 194.3 (66.4), 106.0 (50.4), 28.3 (9.3), and 27.7 (11.2) µg per pre-roll, respectively. Particle size distribution testing via aerodynamic particle sizer and inertial impactor showed that average size of emitted aerosols was 0.77 (0.0) and 0.54 (0.1) µm, respectively.</p><p><strong>Conclusions: </strong>This study describes methodology for characterization of cannabinoid and terpene dose in emitted aerosols and aerosolization efficiency from hemp pre-rolls. It also presents these data for one of the marketed products.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\"35 5-6\",\"pages\":\"169-174\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2023.2206448\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2023.2206448","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Characterization of aerosols from hemp-derived pre-roll joints.
Objective: Availability and consumer use of hemp products is rapidly increasing, but little work has been done to assess aerosol emissions of hemp pre-rolls. The objective of this research was to characterize the aerosol of pre-rolled joints from hemp material enriched for production of cannabigerol (CBG) that were smoked on a test system mimicking human use patterns.
Materials and methods: Aerosol emissions were collected and analyzed using glass microfiber filters and charcoal cartridges. The aerosol was screened for nine phytocannabinoids and 19 terpenes.
Results: Three phytocannabinoids (CBG, cannabichromene (CBC), and delta-9-tetrahydrocannabinol (THC)) were detected and quantified at a mean (SD) concentration of 19.4 (4.7), 0.48 (0.01), and 0.40 (0.04) mg per pre-roll, respectively. Five terpenes ((-)-α-bisabolol, (-)-guaiol, β-caryophyllene, nerolidol, and α-humulene) were detected and quantified at an average concentration of 352.7 (112.0), 194.3 (66.4), 106.0 (50.4), 28.3 (9.3), and 27.7 (11.2) µg per pre-roll, respectively. Particle size distribution testing via aerodynamic particle sizer and inertial impactor showed that average size of emitted aerosols was 0.77 (0.0) and 0.54 (0.1) µm, respectively.
Conclusions: This study describes methodology for characterization of cannabinoid and terpene dose in emitted aerosols and aerosolization efficiency from hemp pre-rolls. It also presents these data for one of the marketed products.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.