{"title":"循环Aβ种子在脑淀粉样变性进展中的作用。","authors":"Nazaret Gamez, Rodrigo Morales","doi":"10.1177/26331055221123072","DOIUrl":null,"url":null,"abstract":"<p><p>While understudied, it is suspected that peripheral Aβ peptides affect Alzheimer's disease (AD)-associated pathological changes in the brain. The peripheral sink hypothesis postulates that the central and peripheral pools of Aβ co-exist in equilibrium. As such, cerebral amyloid levels may be modulated by intervening circulating Aβ. In this commentary, we discuss relevant literature supporting the potential role of peripheral Aβ in exacerbating brain amyloidosis in both humans and mouse models of AD. Moreover, we highlight the need to further understand the mechanisms by which circulating Aβ peptides may reach the brain and contribute to neuropathology. Finally, we discuss the implications of targeting peripheral Aβ as a therapeutic approach in treating AD.</p>","PeriodicalId":36527,"journal":{"name":"Neuroscience Insights","volume":"17 ","pages":"26331055221123072"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/e3/10.1177_26331055221123072.PMC9493672.pdf","citationCount":"0","resultStr":"{\"title\":\"The Role of Circulating Aβ Seeds in the Progression of Cerebral Amyloidosis.\",\"authors\":\"Nazaret Gamez, Rodrigo Morales\",\"doi\":\"10.1177/26331055221123072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While understudied, it is suspected that peripheral Aβ peptides affect Alzheimer's disease (AD)-associated pathological changes in the brain. The peripheral sink hypothesis postulates that the central and peripheral pools of Aβ co-exist in equilibrium. As such, cerebral amyloid levels may be modulated by intervening circulating Aβ. In this commentary, we discuss relevant literature supporting the potential role of peripheral Aβ in exacerbating brain amyloidosis in both humans and mouse models of AD. Moreover, we highlight the need to further understand the mechanisms by which circulating Aβ peptides may reach the brain and contribute to neuropathology. Finally, we discuss the implications of targeting peripheral Aβ as a therapeutic approach in treating AD.</p>\",\"PeriodicalId\":36527,\"journal\":{\"name\":\"Neuroscience Insights\",\"volume\":\"17 \",\"pages\":\"26331055221123072\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/e3/10.1177_26331055221123072.PMC9493672.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26331055221123072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26331055221123072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Role of Circulating Aβ Seeds in the Progression of Cerebral Amyloidosis.
While understudied, it is suspected that peripheral Aβ peptides affect Alzheimer's disease (AD)-associated pathological changes in the brain. The peripheral sink hypothesis postulates that the central and peripheral pools of Aβ co-exist in equilibrium. As such, cerebral amyloid levels may be modulated by intervening circulating Aβ. In this commentary, we discuss relevant literature supporting the potential role of peripheral Aβ in exacerbating brain amyloidosis in both humans and mouse models of AD. Moreover, we highlight the need to further understand the mechanisms by which circulating Aβ peptides may reach the brain and contribute to neuropathology. Finally, we discuss the implications of targeting peripheral Aβ as a therapeutic approach in treating AD.