Ignacio Martín Santarelli , Diego Jorge Manzella , María Lucía Gallo Vaulet , Marcelo Rodríguez Fermepín , Yanina Crespo , Santiago Toledo Monaca , Martín Dobarro , Sofía Isabel Fernández
{"title":"循环阈值预测了一组感染严重急性呼吸系统综合征冠状病毒2型的血液系统恶性肿瘤患者的死亡率。","authors":"Ignacio Martín Santarelli , Diego Jorge Manzella , María Lucía Gallo Vaulet , Marcelo Rodríguez Fermepín , Yanina Crespo , Santiago Toledo Monaca , Martín Dobarro , Sofía Isabel Fernández","doi":"10.1016/j.ram.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>When a SARS-CoV-2 RT-qPCR test is performed, it may determine an indirect measure of viral load called cycle threshold (Ct). Respiratory samples with Ct <25.0 cycles are considered to contain a high viral load. We aimed to determine whether SARS-CoV-2 Ct at diagnosis could predict mortality in patients with hematologic malignancies (lymphomas, leukemias, multiple myeloma) who contracted COVID-19. We included 35 adults with COVID-19 confirmed by RT-qPCR performed at diagnosis. We evaluated mortality due to COVID-19 rather than mortality due to the hematologic neoplasm or all-cause mortality. Twenty-seven (27) patients survived and 8 died. The global mean Ct was 22.8 cycles with a median of 21.7. Among the survivors, the mean Ct was 24.2, and the median Ct value was 22.9 cycles. In the deceased patients, the mean Ct was 18.0 and the median Ct value was 17.0 cycles. Using the Wilcoxon Rank Sum test, we found a significant difference (<em>p</em> <!-->=<!--> <!-->0.035). SARS-CoV-2 Ct measured in nasal swabs obtained at diagnosis from patients with hematologic malignancies may be used to predict mortality.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cycle threshold predicted mortality in a cohort of patients with hematologic malignancies infected with SARS-CoV-2\",\"authors\":\"Ignacio Martín Santarelli , Diego Jorge Manzella , María Lucía Gallo Vaulet , Marcelo Rodríguez Fermepín , Yanina Crespo , Santiago Toledo Monaca , Martín Dobarro , Sofía Isabel Fernández\",\"doi\":\"10.1016/j.ram.2023.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When a SARS-CoV-2 RT-qPCR test is performed, it may determine an indirect measure of viral load called cycle threshold (Ct). Respiratory samples with Ct <25.0 cycles are considered to contain a high viral load. We aimed to determine whether SARS-CoV-2 Ct at diagnosis could predict mortality in patients with hematologic malignancies (lymphomas, leukemias, multiple myeloma) who contracted COVID-19. We included 35 adults with COVID-19 confirmed by RT-qPCR performed at diagnosis. We evaluated mortality due to COVID-19 rather than mortality due to the hematologic neoplasm or all-cause mortality. Twenty-seven (27) patients survived and 8 died. The global mean Ct was 22.8 cycles with a median of 21.7. Among the survivors, the mean Ct was 24.2, and the median Ct value was 22.9 cycles. In the deceased patients, the mean Ct was 18.0 and the median Ct value was 17.0 cycles. Using the Wilcoxon Rank Sum test, we found a significant difference (<em>p</em> <!-->=<!--> <!-->0.035). SARS-CoV-2 Ct measured in nasal swabs obtained at diagnosis from patients with hematologic malignancies may be used to predict mortality.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0325754123000275\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0325754123000275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cycle threshold predicted mortality in a cohort of patients with hematologic malignancies infected with SARS-CoV-2
When a SARS-CoV-2 RT-qPCR test is performed, it may determine an indirect measure of viral load called cycle threshold (Ct). Respiratory samples with Ct <25.0 cycles are considered to contain a high viral load. We aimed to determine whether SARS-CoV-2 Ct at diagnosis could predict mortality in patients with hematologic malignancies (lymphomas, leukemias, multiple myeloma) who contracted COVID-19. We included 35 adults with COVID-19 confirmed by RT-qPCR performed at diagnosis. We evaluated mortality due to COVID-19 rather than mortality due to the hematologic neoplasm or all-cause mortality. Twenty-seven (27) patients survived and 8 died. The global mean Ct was 22.8 cycles with a median of 21.7. Among the survivors, the mean Ct was 24.2, and the median Ct value was 22.9 cycles. In the deceased patients, the mean Ct was 18.0 and the median Ct value was 17.0 cycles. Using the Wilcoxon Rank Sum test, we found a significant difference (p = 0.035). SARS-CoV-2 Ct measured in nasal swabs obtained at diagnosis from patients with hematologic malignancies may be used to predict mortality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.