M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen
{"title":"大鼠记忆中事件序列的性周期和发情周期。","authors":"M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen","doi":"10.1037/bne0000508","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"349-363"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448822/pdf/nihms-1825637.pdf","citationCount":"2","resultStr":"{\"title\":\"Sex and estrous cycle in memory for sequences of events in rats.\",\"authors\":\"M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen\",\"doi\":\"10.1037/bne0000508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>\",\"PeriodicalId\":8739,\"journal\":{\"name\":\"Behavioral neuroscience\",\"volume\":\"136 5\",\"pages\":\"349-363\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448822/pdf/nihms-1825637.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/bne0000508\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Sex and estrous cycle in memory for sequences of events in rats.
The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).