P2X7嘌呤受体在肌营养不良和肌多糖病的发病机制和治疗中的作用

IF 4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Dariusz C. Gόrecki, Robin M.H. Rumney
{"title":"P2X7嘌呤受体在肌营养不良和肌多糖病的发病机制和治疗中的作用","authors":"Dariusz C. Gόrecki,&nbsp;Robin M.H. Rumney","doi":"10.1016/j.coph.2023.102357","DOIUrl":null,"url":null,"abstract":"<div><p>Dystrophinopathy and sarcoglycanopathies are incurable diseases caused by mutations in the genes encoding dystrophin or members of the dystrophin associated protein complex (DAPC). Restoration of the missing dystrophin or sarcoglycans <em>via</em> genetic approaches is complicated by the downsides of personalised medicines and immune responses against re-expressed proteins. Thus, the targeting of disease mechanisms downstream from the mutant protein has a strong translational potential. Acute muscle damage causes release of large quantities of ATP, which activates P2X7 purinoceptors, resulting in inflammation that clears dead tissues and triggers regeneration. However, in dystrophic muscles, loss of α-sarcoglycan ecto-ATPase activity further elevates extracellular ATP (eATP) levels, exacerbating the pathology. Moreover, seemingly compensatory P2X7 upregulation in dystrophic muscle cells, combined with high eATP leads to further damage. Accordingly, P2X7 blockade alleviated dystrophic damage in mouse models of both dystrophinopathy and sarcoglycanopathy. Existing P2X7 blockers could be re-purposed for the treatment of these highly debilitating diseases.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The P2X7 purinoceptor in pathogenesis and treatment of dystrophino- and sarcoglycanopathies\",\"authors\":\"Dariusz C. Gόrecki,&nbsp;Robin M.H. Rumney\",\"doi\":\"10.1016/j.coph.2023.102357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dystrophinopathy and sarcoglycanopathies are incurable diseases caused by mutations in the genes encoding dystrophin or members of the dystrophin associated protein complex (DAPC). Restoration of the missing dystrophin or sarcoglycans <em>via</em> genetic approaches is complicated by the downsides of personalised medicines and immune responses against re-expressed proteins. Thus, the targeting of disease mechanisms downstream from the mutant protein has a strong translational potential. Acute muscle damage causes release of large quantities of ATP, which activates P2X7 purinoceptors, resulting in inflammation that clears dead tissues and triggers regeneration. However, in dystrophic muscles, loss of α-sarcoglycan ecto-ATPase activity further elevates extracellular ATP (eATP) levels, exacerbating the pathology. Moreover, seemingly compensatory P2X7 upregulation in dystrophic muscle cells, combined with high eATP leads to further damage. Accordingly, P2X7 blockade alleviated dystrophic damage in mouse models of both dystrophinopathy and sarcoglycanopathy. Existing P2X7 blockers could be re-purposed for the treatment of these highly debilitating diseases.</p></div>\",\"PeriodicalId\":50603,\"journal\":{\"name\":\"Current Opinion in Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1471489223000103\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471489223000103","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩蛋白病和肌聚糖病是由编码肌萎缩蛋白或肌萎缩蛋白相关蛋白复合体(DAPC)成员的基因突变引起的不治之症。通过遗传方法恢复缺失的肌营养不良蛋白或肌聚糖由于个性化药物和针对重新表达的蛋白质的免疫反应的不利影响而变得复杂。因此,靶向突变蛋白下游的疾病机制具有很强的翻译潜力。急性肌肉损伤会导致大量ATP的释放,从而激活P2X7嘌呤受体,导致炎症,清除死亡组织并引发再生。然而,在营养不良肌肉中,α-肌聚糖胞外ATP酶活性的丧失进一步升高了细胞外ATP(eATP)水平,加剧了病理。此外,营养不良肌肉细胞中看似补偿性的P2X7上调,与高eATP相结合,会导致进一步的损伤。因此,P2X7阻断减轻了肌营养不良蛋白病和肌聚糖病小鼠模型中的肌营养不良损伤。现有的P2X7阻断剂可以重新用于治疗这些高度衰弱的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The P2X7 purinoceptor in pathogenesis and treatment of dystrophino- and sarcoglycanopathies

Dystrophinopathy and sarcoglycanopathies are incurable diseases caused by mutations in the genes encoding dystrophin or members of the dystrophin associated protein complex (DAPC). Restoration of the missing dystrophin or sarcoglycans via genetic approaches is complicated by the downsides of personalised medicines and immune responses against re-expressed proteins. Thus, the targeting of disease mechanisms downstream from the mutant protein has a strong translational potential. Acute muscle damage causes release of large quantities of ATP, which activates P2X7 purinoceptors, resulting in inflammation that clears dead tissues and triggers regeneration. However, in dystrophic muscles, loss of α-sarcoglycan ecto-ATPase activity further elevates extracellular ATP (eATP) levels, exacerbating the pathology. Moreover, seemingly compensatory P2X7 upregulation in dystrophic muscle cells, combined with high eATP leads to further damage. Accordingly, P2X7 blockade alleviated dystrophic damage in mouse models of both dystrophinopathy and sarcoglycanopathy. Existing P2X7 blockers could be re-purposed for the treatment of these highly debilitating diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
2.50%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Pharmacology (COPHAR) publishes authoritative, comprehensive, and systematic reviews. COPHAR helps specialists keep up to date with a clear and readable synthesis on current advances in pharmacology and drug discovery. Expert authors annotate the most interesting papers from the expanding volume of information published today, saving valuable time and giving the reader insight on areas of importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信