Johanna F A Husch, Laura Coquelin, Nathalie Chevallier, Dorien Tiemessen, Egbert Oosterwijk, René van Rheden, Charlotte Woud, Jurriaan Vossen, Sander C G Leeuwenburgh, Jeroen J J P van den Beucken
{"title":"脂肪组织来源细胞群成骨能力和成骨诱导的比较。","authors":"Johanna F A Husch, Laura Coquelin, Nathalie Chevallier, Dorien Tiemessen, Egbert Oosterwijk, René van Rheden, Charlotte Woud, Jurriaan Vossen, Sander C G Leeuwenburgh, Jeroen J J P van den Beucken","doi":"10.1089/ten.TEC.2023.0039","DOIUrl":null,"url":null,"abstract":"<p><p>Stromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional <i>ex vivo</i> expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce. Consequently, we here aimed at comparing the <i>in vitro</i> osteogenic differentiation capacity of donor-matched SVF versus ATMSCs as well as their osteoinductive capacity. Human adipose tissue from nine different donors was used to isolate SVF, which was further purified via plastic-adherence to obtain donor-matched ATMSCs. Both cell populations were immunophenotypically characterized for mesenchymal stromal cell, endothelial, and hematopoietic markers after isolation and immunocytochemical staining was used to identify different cell types during prolonged cell culture. Based on normalization using plastic-adherence fraction determination, SVF and ATMSCs were seeded and cultured in osteogenic differentiation medium for 28 days. Further, SVF and ATMSCs were seeded onto devitalized bovine bone granules and subcutaneously implanted into nude mice. After 42 days of implantation, granules were retrieved, histologically processed, and stained with hematoxylin and eosin (HE) to assess ectopic bone formation. The ATMSCs were shown to be a homogenous cell population during cell culture, whereas SVF cultures consisted of multiple cell types. All donor-matched comparisons showed either accelerated or stronger mineralization for SVF cultures <i>in vitro</i>. However, neither SVF nor ATMSCs loaded on devitalized bone granules induced ectopic bone formation on subcutaneous implantation, as opposed to control granules loaded with bone morphogenetic protein-2 (BMP-2), which triggered ectopic bone formation with 100% incidence. Despite the observed lack of osteoinduction, our findings provide important <i>in vitro</i> evidence on the osteogenic superiority of intra-operatively available SVF as compared with donor-matched ATMSCs. Consequently, further studies should focus on optimizing the efficacy of these cell populations for implementation in orthotopic bone fracture or defect treatment.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"29 5","pages":"216-227"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Osteogenic Capacity and Osteoinduction of Adipose Tissue-Derived Cell Populations.\",\"authors\":\"Johanna F A Husch, Laura Coquelin, Nathalie Chevallier, Dorien Tiemessen, Egbert Oosterwijk, René van Rheden, Charlotte Woud, Jurriaan Vossen, Sander C G Leeuwenburgh, Jeroen J J P van den Beucken\",\"doi\":\"10.1089/ten.TEC.2023.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional <i>ex vivo</i> expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce. Consequently, we here aimed at comparing the <i>in vitro</i> osteogenic differentiation capacity of donor-matched SVF versus ATMSCs as well as their osteoinductive capacity. Human adipose tissue from nine different donors was used to isolate SVF, which was further purified via plastic-adherence to obtain donor-matched ATMSCs. Both cell populations were immunophenotypically characterized for mesenchymal stromal cell, endothelial, and hematopoietic markers after isolation and immunocytochemical staining was used to identify different cell types during prolonged cell culture. Based on normalization using plastic-adherence fraction determination, SVF and ATMSCs were seeded and cultured in osteogenic differentiation medium for 28 days. Further, SVF and ATMSCs were seeded onto devitalized bovine bone granules and subcutaneously implanted into nude mice. After 42 days of implantation, granules were retrieved, histologically processed, and stained with hematoxylin and eosin (HE) to assess ectopic bone formation. The ATMSCs were shown to be a homogenous cell population during cell culture, whereas SVF cultures consisted of multiple cell types. All donor-matched comparisons showed either accelerated or stronger mineralization for SVF cultures <i>in vitro</i>. However, neither SVF nor ATMSCs loaded on devitalized bone granules induced ectopic bone formation on subcutaneous implantation, as opposed to control granules loaded with bone morphogenetic protein-2 (BMP-2), which triggered ectopic bone formation with 100% incidence. Despite the observed lack of osteoinduction, our findings provide important <i>in vitro</i> evidence on the osteogenic superiority of intra-operatively available SVF as compared with donor-matched ATMSCs. Consequently, further studies should focus on optimizing the efficacy of these cell populations for implementation in orthotopic bone fracture or defect treatment.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"29 5\",\"pages\":\"216-227\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2023.0039\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Comparison of Osteogenic Capacity and Osteoinduction of Adipose Tissue-Derived Cell Populations.
Stromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional ex vivo expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce. Consequently, we here aimed at comparing the in vitro osteogenic differentiation capacity of donor-matched SVF versus ATMSCs as well as their osteoinductive capacity. Human adipose tissue from nine different donors was used to isolate SVF, which was further purified via plastic-adherence to obtain donor-matched ATMSCs. Both cell populations were immunophenotypically characterized for mesenchymal stromal cell, endothelial, and hematopoietic markers after isolation and immunocytochemical staining was used to identify different cell types during prolonged cell culture. Based on normalization using plastic-adherence fraction determination, SVF and ATMSCs were seeded and cultured in osteogenic differentiation medium for 28 days. Further, SVF and ATMSCs were seeded onto devitalized bovine bone granules and subcutaneously implanted into nude mice. After 42 days of implantation, granules were retrieved, histologically processed, and stained with hematoxylin and eosin (HE) to assess ectopic bone formation. The ATMSCs were shown to be a homogenous cell population during cell culture, whereas SVF cultures consisted of multiple cell types. All donor-matched comparisons showed either accelerated or stronger mineralization for SVF cultures in vitro. However, neither SVF nor ATMSCs loaded on devitalized bone granules induced ectopic bone formation on subcutaneous implantation, as opposed to control granules loaded with bone morphogenetic protein-2 (BMP-2), which triggered ectopic bone formation with 100% incidence. Despite the observed lack of osteoinduction, our findings provide important in vitro evidence on the osteogenic superiority of intra-operatively available SVF as compared with donor-matched ATMSCs. Consequently, further studies should focus on optimizing the efficacy of these cell populations for implementation in orthotopic bone fracture or defect treatment.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.