Cox回归可以是可折叠的,Aalen回归可以是不可折叠的。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sven Ove Samuelsen
{"title":"Cox回归可以是可折叠的,Aalen回归可以是不可折叠的。","authors":"Sven Ove Samuelsen","doi":"10.1007/s10985-022-09578-0","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that the additive hazards model is collapsible, in the sense that when omitting one covariate from a model with two independent covariates, the marginal model is still an additive hazards model with the same regression coefficient or function for the remaining covariate. In contrast, for the proportional hazards model under the same covariate assumption, the marginal model is no longer a proportional hazards model and is not collapsible. These results, however, relate to the model specification and not to the regression parameter estimators. We point out that if covariates in risk sets at all event times are independent then both Cox and Aalen regression estimators are collapsible, in the sense that the parameter estimators in the full and marginal models are consistent for the same value. Vice-versa, if this assumption fails, then the estimates will change systematically both for Cox and Aalen regression. In particular, if the data are generated by an Aalen model with censoring independent of covariates both Cox and Aalen regression is collapsible, but if generated by a proportional hazards model neither estimators are. We will also discuss settings where survival times are generated by proportional hazards models with censoring patterns providing uncorrelated covariates and hence collapsible Cox and Aalen regression estimates. Furthermore, possible consequences for instrumental variable analyses are discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006274/pdf/","citationCount":"1","resultStr":"{\"title\":\"Cox regression can be collapsible and Aalen regression can be non-collapsible.\",\"authors\":\"Sven Ove Samuelsen\",\"doi\":\"10.1007/s10985-022-09578-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that the additive hazards model is collapsible, in the sense that when omitting one covariate from a model with two independent covariates, the marginal model is still an additive hazards model with the same regression coefficient or function for the remaining covariate. In contrast, for the proportional hazards model under the same covariate assumption, the marginal model is no longer a proportional hazards model and is not collapsible. These results, however, relate to the model specification and not to the regression parameter estimators. We point out that if covariates in risk sets at all event times are independent then both Cox and Aalen regression estimators are collapsible, in the sense that the parameter estimators in the full and marginal models are consistent for the same value. Vice-versa, if this assumption fails, then the estimates will change systematically both for Cox and Aalen regression. In particular, if the data are generated by an Aalen model with censoring independent of covariates both Cox and Aalen regression is collapsible, but if generated by a proportional hazards model neither estimators are. We will also discuss settings where survival times are generated by proportional hazards models with censoring patterns providing uncorrelated covariates and hence collapsible Cox and Aalen regression estimates. Furthermore, possible consequences for instrumental variable analyses are discussed.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006274/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09578-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09578-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,加性风险模型是可折叠的,也就是说,当一个有两个独立协变量的模型中省略一个协变量时,边际模型仍然是一个对剩余协变量具有相同回归系数或函数的加性风险模型。相反,对于相同协变量假设下的比例风险模型,边际模型不再是比例风险模型,不能折叠。然而,这些结果与模型规格有关,而与回归参数估计器无关。我们指出,如果风险集中的协变量在所有事件时刻都是独立的,那么Cox和Aalen回归估计量都是可折叠的,这意味着完整模型和边缘模型中的参数估计量对于相同的值是一致的。反之,如果这个假设不成立,那么Cox回归和Aalen回归的估计值都将发生系统性变化。特别是,如果数据是由具有独立于协变量的筛选的Aalen模型生成的,则Cox和Aalen回归都是可折叠的,但如果是由比例风险模型生成的,则两个估计器都不能折叠。我们还将讨论由比例风险模型生成生存时间的设置,该模型具有提供不相关协变量的审查模式,因此可折叠Cox和Aalen回归估计。此外,还讨论了工具变量分析可能产生的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cox regression can be collapsible and Aalen regression can be non-collapsible.

It is well-known that the additive hazards model is collapsible, in the sense that when omitting one covariate from a model with two independent covariates, the marginal model is still an additive hazards model with the same regression coefficient or function for the remaining covariate. In contrast, for the proportional hazards model under the same covariate assumption, the marginal model is no longer a proportional hazards model and is not collapsible. These results, however, relate to the model specification and not to the regression parameter estimators. We point out that if covariates in risk sets at all event times are independent then both Cox and Aalen regression estimators are collapsible, in the sense that the parameter estimators in the full and marginal models are consistent for the same value. Vice-versa, if this assumption fails, then the estimates will change systematically both for Cox and Aalen regression. In particular, if the data are generated by an Aalen model with censoring independent of covariates both Cox and Aalen regression is collapsible, but if generated by a proportional hazards model neither estimators are. We will also discuss settings where survival times are generated by proportional hazards models with censoring patterns providing uncorrelated covariates and hence collapsible Cox and Aalen regression estimates. Furthermore, possible consequences for instrumental variable analyses are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信