Eugenio Piasini, Alexandre L S Filipowicz, Jonathan Levine, Joshua I Gold
{"title":"Embo:使用信息瓶颈进行实证数据分析的 Python 软件包。","authors":"Eugenio Piasini, Alexandre L S Filipowicz, Jonathan Levine, Joshua I Gold","doi":"10.5334/jors.322","DOIUrl":null,"url":null,"abstract":"<p><p>We present <i>embo</i>, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables <i>X</i> and <i>Y</i>, the IB finds the stochastic mapping <i>M</i> of <i>X</i> that encodes the most information about <i>Y</i>, subject to a constraint on the information that <i>M</i> is allowed to retain about <i>X</i>. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.</p>","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Embo: a Python package for empirical data analysis using the Information Bottleneck.\",\"authors\":\"Eugenio Piasini, Alexandre L S Filipowicz, Jonathan Levine, Joshua I Gold\",\"doi\":\"10.5334/jors.322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present <i>embo</i>, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables <i>X</i> and <i>Y</i>, the IB finds the stochastic mapping <i>M</i> of <i>X</i> that encodes the most information about <i>Y</i>, subject to a constraint on the information that <i>M</i> is allowed to retain about <i>X</i>. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.</p>\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
摘要
embo 是一个 Python 软件包,用于使用信息瓶颈(IB)方法及其变体(如确定性信息瓶颈(DIB))分析经验数据。给定两个随机变量 X 和 Y,IB 会找到 X 的随机映射 M,该映射编码了关于 Y 的最多信息,但受限于允许 M 保留的关于 X 的信息。尽管 IB 很受欢迎,但仍缺少一个面向经验数据易用性的参考算法实现。Embo 针对离散、低维数据的常见情况进行了优化。Embo 速度快,提供标准的数据处理管道,提供关键计算步骤的并行执行,并包含合理的方法参数默认值。Embo 广泛适用于不同的问题领域,因为它可用于由两个离散变量的联合观测数据组成的任何数据集。Embo 可从 Python 软件包索引(PyPI)、Zenodo 和 GitLab 获取。
Embo: a Python package for empirical data analysis using the Information Bottleneck.
We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.