Mengxue He, Jiachen Shi, Aiyang Liu, Yong-Jiang Xu and Yuanfa Liu
{"title":"抗生素诱导的肠道菌群失调改变了宿主代谢†","authors":"Mengxue He, Jiachen Shi, Aiyang Liu, Yong-Jiang Xu and Yuanfa Liu","doi":"10.1039/D2MO00284A","DOIUrl":null,"url":null,"abstract":"<p >Antibiotics are useful for treating infections caused by bacteria, but they have negative effects on the host body. The goal of this study was to determine whether antibiotics alter the metabolic phenotype of the host. We found that taking antibiotics reduced the diversity and richness of gut microbiota and affected the composition of the microbiome, which in turn altered the metabolic profiles of plasma and fecal samples. Additionally, plasma and fecal metabolites and gut microbiota genera showed a significant association. The most significant pathways related to the gut dysbiosis induced by antibiotics including purine, pentose, and glucuronate metabolism, histidine, ascorbate and alternate, lysine degradation, and fatty acid biosynthesis. The relationship between gut microbiota and altered metabolites of plasma and feces provides information about bacterial action, which is useful for designing new microbiota-based disease prevention and treatment interventions.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 4","pages":" 330-339"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antibiotic-induced gut microbiota dysbiosis altered host metabolism†\",\"authors\":\"Mengxue He, Jiachen Shi, Aiyang Liu, Yong-Jiang Xu and Yuanfa Liu\",\"doi\":\"10.1039/D2MO00284A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antibiotics are useful for treating infections caused by bacteria, but they have negative effects on the host body. The goal of this study was to determine whether antibiotics alter the metabolic phenotype of the host. We found that taking antibiotics reduced the diversity and richness of gut microbiota and affected the composition of the microbiome, which in turn altered the metabolic profiles of plasma and fecal samples. Additionally, plasma and fecal metabolites and gut microbiota genera showed a significant association. The most significant pathways related to the gut dysbiosis induced by antibiotics including purine, pentose, and glucuronate metabolism, histidine, ascorbate and alternate, lysine degradation, and fatty acid biosynthesis. The relationship between gut microbiota and altered metabolites of plasma and feces provides information about bacterial action, which is useful for designing new microbiota-based disease prevention and treatment interventions.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 4\",\"pages\":\" 330-339\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00284a\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00284a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antibiotic-induced gut microbiota dysbiosis altered host metabolism†
Antibiotics are useful for treating infections caused by bacteria, but they have negative effects on the host body. The goal of this study was to determine whether antibiotics alter the metabolic phenotype of the host. We found that taking antibiotics reduced the diversity and richness of gut microbiota and affected the composition of the microbiome, which in turn altered the metabolic profiles of plasma and fecal samples. Additionally, plasma and fecal metabolites and gut microbiota genera showed a significant association. The most significant pathways related to the gut dysbiosis induced by antibiotics including purine, pentose, and glucuronate metabolism, histidine, ascorbate and alternate, lysine degradation, and fatty acid biosynthesis. The relationship between gut microbiota and altered metabolites of plasma and feces provides information about bacterial action, which is useful for designing new microbiota-based disease prevention and treatment interventions.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.