{"title":"用于组织工程的混合水凝胶材料的三维打印:批判性评论。","authors":"Sanaz Tajik, Camila Negron Garcia, Samantha Gillooley, Lobat Tayebi","doi":"10.1007/s40883-022-00267-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application.</p><p><strong>Methods: </strong>A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed.</p><p><strong>Results: </strong>Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale.</p><p><strong>Conclusion: </strong>Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.</p>","PeriodicalId":20936,"journal":{"name":"Regenerative Engineering and Translational Medicine","volume":"9 1","pages":"29-41"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181842/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.\",\"authors\":\"Sanaz Tajik, Camila Negron Garcia, Samantha Gillooley, Lobat Tayebi\",\"doi\":\"10.1007/s40883-022-00267-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application.</p><p><strong>Methods: </strong>A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed.</p><p><strong>Results: </strong>Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale.</p><p><strong>Conclusion: </strong>Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.</p>\",\"PeriodicalId\":20936,\"journal\":{\"name\":\"Regenerative Engineering and Translational Medicine\",\"volume\":\"9 1\",\"pages\":\"29-41\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Engineering and Translational Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40883-022-00267-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Engineering and Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40883-022-00267-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review.
Purpose: Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application.
Methods: A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed.
Results: Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale.
Conclusion: Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.
期刊介绍:
Regenerative Engineering is an international journal covering convergence of the disciplines of tissue engineering, advanced materials science, stem cell research, the physical sciences, and areas of developmental biology. This convergence brings exciting opportunities to translate bench-top research into bedside methods, allowing the possibility of moving beyond maintaining or repairing tissues to regenerating them. The journal encourages both top-down engineering approaches and bottom-up strategies integrating materials science with stem cell research and developmental biology. Convergence papers on instructive biomaterials, stimuli-responsive biomaterials, micro- and nano-patterning for regenerative engineering, elastomeric biomaterials, hydrogels for tissue engineering, and rapid prototyping and bioprinting approaches are particularly welcome.
The journal provides a premier, single-blind peer-reviewed forum for the publication of original papers, authoritative reviews, rapid communications, news and views, and opinion papers addressing the most important issues and efforts toward successfully regenerating complex human tissues and organs. All research articles feature a lay abstract highlighting the relevance and future impact for patients, government and other health officials, and members of the general public. Bridging the gap between the lab and the clinic, the journal also serves as a dedicated platform for showcasing translational research that brings basic scientific research and discoveries into clinical methods and therapies, contributing to the improvement of human health care.
Topics covered in Regenerative Engineering and Translational Medicine include:
Advanced materials science for regenerative and biomedical applicationsStem cells for tissue regenerationDrug delivery for tissue regenerationNanomaterials and nanobiotechnology for tissue regenerationStudies combining tissue engineering/regeneration with developmental biologyConvergence research in pre-clinical and clinical phases