{"title":"大大提高了紫外线照射聚丙烯的击穿强度和能量密度","authors":"Jiayu Chen, Bao-Wen Li, Yi Sun, Pengxiang Zhang, Zhonghui Shen, Xin Zhang, Ce-Wen Nan, Shujun Zhang","doi":"10.1049/nde2.12022","DOIUrl":null,"url":null,"abstract":"<p>Polymer dielectrics have drawn great attentions for applications in advanced electronic devices and power grids because of their high breakdown strength, low dielectric loss, and excellent flexibility. However, the low energy density in polymer dielectric capacitors will hinder the continuous miniaturization of electrical systems. In this work, ultraviolet irradiation is demonstrated to greatly enhance the breakdown strength and energy density of polypropylene. Dramatically improved breakdown strength of 867 MV/m and discharged energy density of 8.0 J/cm<sup>3</sup>, together with the high energy efficiency of >90%, were simultaneously achieved in polypropylene after ultraviolet irradiation. Our research shows that proper ultraviolet irradiation can effectively improve the energy density of polypropylene without sacrificing its high charge-discharge efficiency, being potential for applications in power electronics and pulse electric systems.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12022","citationCount":"10","resultStr":"{\"title\":\"Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene\",\"authors\":\"Jiayu Chen, Bao-Wen Li, Yi Sun, Pengxiang Zhang, Zhonghui Shen, Xin Zhang, Ce-Wen Nan, Shujun Zhang\",\"doi\":\"10.1049/nde2.12022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymer dielectrics have drawn great attentions for applications in advanced electronic devices and power grids because of their high breakdown strength, low dielectric loss, and excellent flexibility. However, the low energy density in polymer dielectric capacitors will hinder the continuous miniaturization of electrical systems. In this work, ultraviolet irradiation is demonstrated to greatly enhance the breakdown strength and energy density of polypropylene. Dramatically improved breakdown strength of 867 MV/m and discharged energy density of 8.0 J/cm<sup>3</sup>, together with the high energy efficiency of >90%, were simultaneously achieved in polypropylene after ultraviolet irradiation. Our research shows that proper ultraviolet irradiation can effectively improve the energy density of polypropylene without sacrificing its high charge-discharge efficiency, being potential for applications in power electronics and pulse electric systems.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12022\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene
Polymer dielectrics have drawn great attentions for applications in advanced electronic devices and power grids because of their high breakdown strength, low dielectric loss, and excellent flexibility. However, the low energy density in polymer dielectric capacitors will hinder the continuous miniaturization of electrical systems. In this work, ultraviolet irradiation is demonstrated to greatly enhance the breakdown strength and energy density of polypropylene. Dramatically improved breakdown strength of 867 MV/m and discharged energy density of 8.0 J/cm3, together with the high energy efficiency of >90%, were simultaneously achieved in polypropylene after ultraviolet irradiation. Our research shows that proper ultraviolet irradiation can effectively improve the energy density of polypropylene without sacrificing its high charge-discharge efficiency, being potential for applications in power electronics and pulse electric systems.