{"title":"走向多变量:关于使用分类数据的贝叶斯多层次隐马尔可夫模型的建议。","authors":"Sebastian Mildiner Moraga, Emmeke Aarts","doi":"10.1080/00273171.2023.2205392","DOIUrl":null,"url":null,"abstract":"<p><p>The multilevel hidden Markov model (MHMM) is a promising method to investigate intense longitudinal data obtained within the social and behavioral sciences. The MHMM quantifies information on the latent dynamics of behavior over time. In addition, heterogeneity between individuals is accommodated with the inclusion of individual-specific random effects, facilitating the study of individual differences in dynamics. However, the performance of the MHMM has not been sufficiently explored. We performed an extensive simulation to assess the effect of the number of dependent variables (1-8), number of individuals (5-90), and number of observations per individual (100-1600) on the estimation performance of a Bayesian MHMM with categorical data including various levels of state distinctiveness and separation. We found that using multivariate data generally alleviates the sample size needed and improves the stability of the results. Moreover, including variables only consisting of random noise was generally not detrimental to model performance. Regarding the estimation of group-level parameters, the number of individuals and observations largely compensate for each other. However, only the former drives the estimation of between-individual variability. We conclude with guidelines on the sample size necessary based on the level of state distinctiveness and separation and study objectives of the researcher.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"17-45"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Go Multivariate: Recommendations on Bayesian Multilevel Hidden Markov Models with Categorical Data.\",\"authors\":\"Sebastian Mildiner Moraga, Emmeke Aarts\",\"doi\":\"10.1080/00273171.2023.2205392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multilevel hidden Markov model (MHMM) is a promising method to investigate intense longitudinal data obtained within the social and behavioral sciences. The MHMM quantifies information on the latent dynamics of behavior over time. In addition, heterogeneity between individuals is accommodated with the inclusion of individual-specific random effects, facilitating the study of individual differences in dynamics. However, the performance of the MHMM has not been sufficiently explored. We performed an extensive simulation to assess the effect of the number of dependent variables (1-8), number of individuals (5-90), and number of observations per individual (100-1600) on the estimation performance of a Bayesian MHMM with categorical data including various levels of state distinctiveness and separation. We found that using multivariate data generally alleviates the sample size needed and improves the stability of the results. Moreover, including variables only consisting of random noise was generally not detrimental to model performance. Regarding the estimation of group-level parameters, the number of individuals and observations largely compensate for each other. However, only the former drives the estimation of between-individual variability. We conclude with guidelines on the sample size necessary based on the level of state distinctiveness and separation and study objectives of the researcher.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"17-45\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2023.2205392\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2205392","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Go Multivariate: Recommendations on Bayesian Multilevel Hidden Markov Models with Categorical Data.
The multilevel hidden Markov model (MHMM) is a promising method to investigate intense longitudinal data obtained within the social and behavioral sciences. The MHMM quantifies information on the latent dynamics of behavior over time. In addition, heterogeneity between individuals is accommodated with the inclusion of individual-specific random effects, facilitating the study of individual differences in dynamics. However, the performance of the MHMM has not been sufficiently explored. We performed an extensive simulation to assess the effect of the number of dependent variables (1-8), number of individuals (5-90), and number of observations per individual (100-1600) on the estimation performance of a Bayesian MHMM with categorical data including various levels of state distinctiveness and separation. We found that using multivariate data generally alleviates the sample size needed and improves the stability of the results. Moreover, including variables only consisting of random noise was generally not detrimental to model performance. Regarding the estimation of group-level parameters, the number of individuals and observations largely compensate for each other. However, only the former drives the estimation of between-individual variability. We conclude with guidelines on the sample size necessary based on the level of state distinctiveness and separation and study objectives of the researcher.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.