{"title":"氧化还原反应纳米胶束细胞内靶向和可编程药物释放靶向肿瘤治疗。","authors":"Yaxin Yang, Wei Shi, Ziyi Zhang, Fawu Gong, Xuman Feng, Chenxi Guo, Yajuan Qi, Zhanjun Liu","doi":"10.2174/1567201820666230515111328","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Anti-inflammatory medications, in particular aspirin, have chemopreventive and anticancer adjuvant effects on specific types of cancers, according to ongoing anti-tumor research. Additionally, efforts have been made to transform Poly(salicylic acid) (PSA) into delivery-related nanocarriers. to transport anticancer medications into nanocarriers. However, tumor cell targeting and tumor selectivity were lacking in the salicylic acid polymer-based nanocarriers, preventing them from performing to their full potential.</p><p><strong>Objective: </strong>The objective of this study is to prepare targeting and reduction-responsive poly pre-drug nanocarriers (HA-ss-PSA NPs) and to investigate the feasibility of delivering adriamycin (DOX) as nanocarriers.</p><p><strong>Methods: </strong>The structures of the polymers were confirmed by nuclear magnetic resonance hydrogen spectroscopy (1H-NMR) and infrared spectroscopy (IR); the encapsulation rate and drug loading of DOX-loaded nanoparticles were determined by HPLC; and the anti-tumor effects of the carriers were evaluated by MTT experiments and in vivo</i> experiments.</p><p><strong>Results: </strong>The prepared nanocarriers had uniform particle size distribution. The drug release rate was up to 80% within 48 h in the tumor environment. DOX/HA-ss-PSA NPs showed significant cytostatic effects. In addition, HA-ss-PSA NPs showed significant targeting and inhibition of cell migration in cell uptake and scratch assays. In vivo</i> experiments showed that the prepared carriers had high tumor inhibition rates, good targeting effects on the liver and tumor, and significantly reduced toxicity to other tissues.</p><p><strong>Conclusion: </strong>The prepared HA-ss-PSA NPs could effectively inhibit the growth of HepG2 cells and tumors in vivo</i>, indicating that PSA could be used as a backbone component of a safe and reliable drug delivery system, providing a new strategy for the treatment of liver cancer.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"295-307"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox-responsive Nanomicelles with Intracellular Targeting and Programmable Drug Release for Targeted Tumor Therapy.\",\"authors\":\"Yaxin Yang, Wei Shi, Ziyi Zhang, Fawu Gong, Xuman Feng, Chenxi Guo, Yajuan Qi, Zhanjun Liu\",\"doi\":\"10.2174/1567201820666230515111328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Anti-inflammatory medications, in particular aspirin, have chemopreventive and anticancer adjuvant effects on specific types of cancers, according to ongoing anti-tumor research. Additionally, efforts have been made to transform Poly(salicylic acid) (PSA) into delivery-related nanocarriers. to transport anticancer medications into nanocarriers. However, tumor cell targeting and tumor selectivity were lacking in the salicylic acid polymer-based nanocarriers, preventing them from performing to their full potential.</p><p><strong>Objective: </strong>The objective of this study is to prepare targeting and reduction-responsive poly pre-drug nanocarriers (HA-ss-PSA NPs) and to investigate the feasibility of delivering adriamycin (DOX) as nanocarriers.</p><p><strong>Methods: </strong>The structures of the polymers were confirmed by nuclear magnetic resonance hydrogen spectroscopy (1H-NMR) and infrared spectroscopy (IR); the encapsulation rate and drug loading of DOX-loaded nanoparticles were determined by HPLC; and the anti-tumor effects of the carriers were evaluated by MTT experiments and in vivo</i> experiments.</p><p><strong>Results: </strong>The prepared nanocarriers had uniform particle size distribution. The drug release rate was up to 80% within 48 h in the tumor environment. DOX/HA-ss-PSA NPs showed significant cytostatic effects. In addition, HA-ss-PSA NPs showed significant targeting and inhibition of cell migration in cell uptake and scratch assays. In vivo</i> experiments showed that the prepared carriers had high tumor inhibition rates, good targeting effects on the liver and tumor, and significantly reduced toxicity to other tissues.</p><p><strong>Conclusion: </strong>The prepared HA-ss-PSA NPs could effectively inhibit the growth of HepG2 cells and tumors in vivo</i>, indicating that PSA could be used as a backbone component of a safe and reliable drug delivery system, providing a new strategy for the treatment of liver cancer.</p>\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"295-307\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201820666230515111328\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201820666230515111328","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Redox-responsive Nanomicelles with Intracellular Targeting and Programmable Drug Release for Targeted Tumor Therapy.
Introduction: Anti-inflammatory medications, in particular aspirin, have chemopreventive and anticancer adjuvant effects on specific types of cancers, according to ongoing anti-tumor research. Additionally, efforts have been made to transform Poly(salicylic acid) (PSA) into delivery-related nanocarriers. to transport anticancer medications into nanocarriers. However, tumor cell targeting and tumor selectivity were lacking in the salicylic acid polymer-based nanocarriers, preventing them from performing to their full potential.
Objective: The objective of this study is to prepare targeting and reduction-responsive poly pre-drug nanocarriers (HA-ss-PSA NPs) and to investigate the feasibility of delivering adriamycin (DOX) as nanocarriers.
Methods: The structures of the polymers were confirmed by nuclear magnetic resonance hydrogen spectroscopy (1H-NMR) and infrared spectroscopy (IR); the encapsulation rate and drug loading of DOX-loaded nanoparticles were determined by HPLC; and the anti-tumor effects of the carriers were evaluated by MTT experiments and in vivo experiments.
Results: The prepared nanocarriers had uniform particle size distribution. The drug release rate was up to 80% within 48 h in the tumor environment. DOX/HA-ss-PSA NPs showed significant cytostatic effects. In addition, HA-ss-PSA NPs showed significant targeting and inhibition of cell migration in cell uptake and scratch assays. In vivo experiments showed that the prepared carriers had high tumor inhibition rates, good targeting effects on the liver and tumor, and significantly reduced toxicity to other tissues.
Conclusion: The prepared HA-ss-PSA NPs could effectively inhibit the growth of HepG2 cells and tumors in vivo, indicating that PSA could be used as a backbone component of a safe and reliable drug delivery system, providing a new strategy for the treatment of liver cancer.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.