Mixuan Ye, Haidong Zhou, Xinxuan Xu, Lidan Pang, Yunjia Xu, Jingyuan Zhang, Danyan Li
{"title":"应用反向传播神经网络预测抗生素的膜分离。","authors":"Mixuan Ye, Haidong Zhou, Xinxuan Xu, Lidan Pang, Yunjia Xu, Jingyuan Zhang, Danyan Li","doi":"10.1080/10934529.2023.2200719","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane separation of antibiotics predicted with the back propagation neural network.\",\"authors\":\"Mixuan Ye, Haidong Zhou, Xinxuan Xu, Lidan Pang, Yunjia Xu, Jingyuan Zhang, Danyan Li\",\"doi\":\"10.1080/10934529.2023.2200719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2200719\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2200719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Membrane separation of antibiotics predicted with the back propagation neural network.
Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the R2 of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.