应用反向传播神经网络预测抗生素的膜分离。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-01-01 Epub Date: 2023-04-18 DOI:10.1080/10934529.2023.2200719
Mixuan Ye, Haidong Zhou, Xinxuan Xu, Lidan Pang, Yunjia Xu, Jingyuan Zhang, Danyan Li
{"title":"应用反向传播神经网络预测抗生素的膜分离。","authors":"Mixuan Ye,&nbsp;Haidong Zhou,&nbsp;Xinxuan Xu,&nbsp;Lidan Pang,&nbsp;Yunjia Xu,&nbsp;Jingyuan Zhang,&nbsp;Danyan Li","doi":"10.1080/10934529.2023.2200719","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane separation of antibiotics predicted with the back propagation neural network.\",\"authors\":\"Mixuan Ye,&nbsp;Haidong Zhou,&nbsp;Xinxuan Xu,&nbsp;Lidan Pang,&nbsp;Yunjia Xu,&nbsp;Jingyuan Zhang,&nbsp;Danyan Li\",\"doi\":\"10.1080/10934529.2023.2200719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the <i>R</i><sup>2</sup> of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2200719\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2200719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素和抗生素抗性基因(ARGs)在水生环境中经常被检测到,并被视为新出现的污染物。基于反向传播神经网络(BPNN),通过训练输入和输出,建立了膜分离技术对四种目标抗生素去除效果的预测模型。抗生素膜分离试验表明,微滤对阿奇霉素和环丙沙星的去除效果较好,基本在80%以上。超滤和纳滤对磺胺甲恶唑(SMZ)和四环素(TC)的去除效果较好。渗透物中SMZ和TC的浓度之间存在很强的相关性,训练和验证过程的R2超过0.9。输入层变量与预测目标之间的相关性越强,BPNN模型的预测性能就越好。这些结果表明,所建立的BPNN预测模型能够更好地模拟膜分离技术对目标抗生素的去除。该模型可用于预测和探索外部条件对膜分离技术的影响,为BPNN模型在环境保护中的应用提供一定的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membrane separation of antibiotics predicted with the back propagation neural network.

Antibiotics and antibiotic resistance genes (ARGs) have been frequently detected in the aquatic environment and are regarded as emerging pollutants. The prediction models for the removal effect of four target antibiotics by membrane separation technology were constructed based on back propagation neural network (BPNN) through training the input and output. The membrane separation tests of antibiotics showed that the removal effect of microfiltration on azithromycin and ciprofloxacin was better, basically above 80%. For sulfamethoxazole (SMZ) and tetracycline (TC), ultrafiltration and nanofiltration had better removal effects. There was a strong correlation between the concentrations of SMZ and TC in the permeate, and the R2 of the training and validation processes exceeded 0.9. The stronger the correlation between the input layer variables and the prediction target was, the better the prediction performances of the BPNN model than the nonlinear model and the unscented Kalman filter model were. These results showed that the established BPNN prediction model could better simulate the removal of target antibiotics by membrane separation technology. The model could be used to predict and explore the influence of external conditions on membrane separation technology and provide a certain basis for the application of the BPNN model in environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信